Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pop2piano
/processing_pop2piano.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Processor class for Pop2Piano.""" | |
import os | |
from typing import List, Optional, Union | |
import numpy as np | |
from ...feature_extraction_utils import BatchFeature | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils import BatchEncoding, PaddingStrategy, TruncationStrategy | |
from ...utils import TensorType | |
class Pop2PianoProcessor(ProcessorMixin): | |
r""" | |
Constructs an Pop2Piano processor which wraps a Pop2Piano Feature Extractor and Pop2Piano Tokenizer into a single | |
processor. | |
[`Pop2PianoProcessor`] offers all the functionalities of [`Pop2PianoFeatureExtractor`] and [`Pop2PianoTokenizer`]. | |
See the docstring of [`~Pop2PianoProcessor.__call__`] and [`~Pop2PianoProcessor.decode`] for more information. | |
Args: | |
feature_extractor (`Pop2PianoFeatureExtractor`): | |
An instance of [`Pop2PianoFeatureExtractor`]. The feature extractor is a required input. | |
tokenizer (`Pop2PianoTokenizer`): | |
An instance of ['Pop2PianoTokenizer`]. The tokenizer is a required input. | |
""" | |
attributes = ["feature_extractor", "tokenizer"] | |
feature_extractor_class = "Pop2PianoFeatureExtractor" | |
tokenizer_class = "Pop2PianoTokenizer" | |
def __init__(self, feature_extractor, tokenizer): | |
super().__init__(feature_extractor, tokenizer) | |
def __call__( | |
self, | |
audio: Union[np.ndarray, List[float], List[np.ndarray]] = None, | |
sampling_rate: Union[int, List[int]] = None, | |
steps_per_beat: int = 2, | |
resample: Optional[bool] = True, | |
notes: Union[List, TensorType] = None, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
pad_to_multiple_of: Optional[int] = None, | |
verbose: bool = True, | |
**kwargs, | |
) -> Union[BatchFeature, BatchEncoding]: | |
""" | |
This method uses [`Pop2PianoFeatureExtractor.__call__`] method to prepare log-mel-spectrograms for the model, | |
and [`Pop2PianoTokenizer.__call__`] to prepare token_ids from notes. | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
# Since Feature Extractor needs both audio and sampling_rate and tokenizer needs both token_ids and | |
# feature_extractor_output, we must check for both. | |
if (audio is None and sampling_rate is None) and (notes is None): | |
raise ValueError( | |
"You have to specify at least audios and sampling_rate in order to use feature extractor or " | |
"notes to use the tokenizer part." | |
) | |
if audio is not None and sampling_rate is not None: | |
inputs = self.feature_extractor( | |
audio=audio, | |
sampling_rate=sampling_rate, | |
steps_per_beat=steps_per_beat, | |
resample=resample, | |
**kwargs, | |
) | |
if notes is not None: | |
encoded_token_ids = self.tokenizer( | |
notes=notes, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
if notes is None: | |
return inputs | |
elif audio is None or sampling_rate is None: | |
return encoded_token_ids | |
else: | |
inputs["token_ids"] = encoded_token_ids["token_ids"] | |
return inputs | |
def batch_decode( | |
self, | |
token_ids, | |
feature_extractor_output: BatchFeature, | |
return_midi: bool = True, | |
) -> BatchEncoding: | |
""" | |
This method uses [`Pop2PianoTokenizer.batch_decode`] method to convert model generated token_ids to midi_notes. | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
return self.tokenizer.batch_decode( | |
token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=return_midi | |
) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
feature_extractor_input_names = self.feature_extractor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) | |
def save_pretrained(self, save_directory, **kwargs): | |
if os.path.isfile(save_directory): | |
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") | |
os.makedirs(save_directory, exist_ok=True) | |
return super().save_pretrained(save_directory, **kwargs) | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) | |
return cls(*args) | |