Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/pop2piano
/tokenization_pop2piano.py
# coding=utf-8 | |
# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization class for Pop2Piano.""" | |
import json | |
import os | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
from ...feature_extraction_utils import BatchFeature | |
from ...tokenization_utils import AddedToken, BatchEncoding, PaddingStrategy, PreTrainedTokenizer, TruncationStrategy | |
from ...utils import TensorType, is_pretty_midi_available, logging, requires_backends, to_numpy | |
if is_pretty_midi_available(): | |
import pretty_midi | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab": "vocab.json", | |
} | |
def token_time_to_note(number, cutoff_time_idx, current_idx): | |
current_idx += number | |
if cutoff_time_idx is not None: | |
current_idx = min(current_idx, cutoff_time_idx) | |
return current_idx | |
def token_note_to_note(number, current_velocity, default_velocity, note_onsets_ready, current_idx, notes): | |
if note_onsets_ready[number] is not None: | |
# offset with onset | |
onset_idx = note_onsets_ready[number] | |
if onset_idx < current_idx: | |
# Time shift after previous note_on | |
offset_idx = current_idx | |
notes.append([onset_idx, offset_idx, number, default_velocity]) | |
onsets_ready = None if current_velocity == 0 else current_idx | |
note_onsets_ready[number] = onsets_ready | |
else: | |
note_onsets_ready[number] = current_idx | |
return notes | |
class Pop2PianoTokenizer(PreTrainedTokenizer): | |
""" | |
Constructs a Pop2Piano tokenizer. This tokenizer does not require training. | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab (`str`): | |
Path to the vocab file which contains the vocabulary. | |
default_velocity (`int`, *optional*, defaults to 77): | |
Determines the default velocity to be used while creating midi Notes. | |
num_bars (`int`, *optional*, defaults to 2): | |
Determines cutoff_time_idx in for each token. | |
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"-1"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 1): | |
The end of sequence token. | |
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 0): | |
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by | |
attention mechanisms or loss computation. | |
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 2): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
""" | |
model_input_names = ["token_ids", "attention_mask"] | |
vocab_files_names = VOCAB_FILES_NAMES | |
def __init__( | |
self, | |
vocab, | |
default_velocity=77, | |
num_bars=2, | |
unk_token="-1", | |
eos_token="1", | |
pad_token="0", | |
bos_token="2", | |
**kwargs, | |
): | |
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token | |
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token | |
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token | |
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token | |
self.default_velocity = default_velocity | |
self.num_bars = num_bars | |
# Load the vocab | |
with open(vocab, "rb") as file: | |
self.encoder = json.load(file) | |
# create mappings for encoder | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
super().__init__( | |
unk_token=unk_token, | |
eos_token=eos_token, | |
pad_token=pad_token, | |
bos_token=bos_token, | |
**kwargs, | |
) | |
def vocab_size(self): | |
"""Returns the vocabulary size of the tokenizer.""" | |
return len(self.encoder) | |
def get_vocab(self): | |
"""Returns the vocabulary of the tokenizer.""" | |
return dict(self.encoder, **self.added_tokens_encoder) | |
def _convert_id_to_token(self, token_id: int) -> list: | |
""" | |
Decodes the token ids generated by the transformer into notes. | |
Args: | |
token_id (`int`): | |
This denotes the ids generated by the transformers to be converted to Midi tokens. | |
Returns: | |
`List`: A list consists of token_type (`str`) and value (`int`). | |
""" | |
token_type_value = self.decoder.get(token_id, f"{self.unk_token}_TOKEN_TIME") | |
token_type_value = token_type_value.split("_") | |
token_type, value = "_".join(token_type_value[1:]), int(token_type_value[0]) | |
return [token_type, value] | |
def _convert_token_to_id(self, token, token_type="TOKEN_TIME") -> int: | |
""" | |
Encodes the Midi tokens to transformer generated token ids. | |
Args: | |
token (`int`): | |
This denotes the token value. | |
token_type (`str`): | |
This denotes the type of the token. There are four types of midi tokens such as "TOKEN_TIME", | |
"TOKEN_VELOCITY", "TOKEN_NOTE" and "TOKEN_SPECIAL". | |
Returns: | |
`int`: returns the id of the token. | |
""" | |
return self.encoder.get(f"{token}_{token_type}", int(self.unk_token)) | |
def relative_batch_tokens_ids_to_notes( | |
self, | |
tokens: np.ndarray, | |
beat_offset_idx: int, | |
bars_per_batch: int, | |
cutoff_time_idx: int, | |
): | |
""" | |
Converts relative tokens to notes which are then used to generate pretty midi object. | |
Args: | |
tokens (`numpy.ndarray`): | |
Tokens to be converted to notes. | |
beat_offset_idx (`int`): | |
Denotes beat offset index for each note in generated Midi. | |
bars_per_batch (`int`): | |
A parameter to control the Midi output generation. | |
cutoff_time_idx (`int`): | |
Denotes the cutoff time index for each note in generated Midi. | |
""" | |
notes = None | |
for index in range(len(tokens)): | |
_tokens = tokens[index] | |
_start_idx = beat_offset_idx + index * bars_per_batch * 4 | |
_cutoff_time_idx = cutoff_time_idx + _start_idx | |
_notes = self.relative_tokens_ids_to_notes( | |
_tokens, | |
start_idx=_start_idx, | |
cutoff_time_idx=_cutoff_time_idx, | |
) | |
if len(_notes) == 0: | |
pass | |
elif notes is None: | |
notes = _notes | |
else: | |
notes = np.concatenate((notes, _notes), axis=0) | |
if notes is None: | |
return [] | |
return notes | |
def relative_batch_tokens_ids_to_midi( | |
self, | |
tokens: np.ndarray, | |
beatstep: np.ndarray, | |
beat_offset_idx: int = 0, | |
bars_per_batch: int = 2, | |
cutoff_time_idx: int = 12, | |
): | |
""" | |
Converts tokens to Midi. This method calls `relative_batch_tokens_ids_to_notes` method to convert batch tokens | |
to notes then uses `notes_to_midi` method to convert them to Midi. | |
Args: | |
tokens (`numpy.ndarray`): | |
Denotes tokens which alongside beatstep will be converted to Midi. | |
beatstep (`np.ndarray`): | |
We get beatstep from feature extractor which is also used to get Midi. | |
beat_offset_idx (`int`, *optional*, defaults to 0): | |
Denotes beat offset index for each note in generated Midi. | |
bars_per_batch (`int`, *optional*, defaults to 2): | |
A parameter to control the Midi output generation. | |
cutoff_time_idx (`int`, *optional*, defaults to 12): | |
Denotes the cutoff time index for each note in generated Midi. | |
""" | |
beat_offset_idx = 0 if beat_offset_idx is None else beat_offset_idx | |
notes = self.relative_batch_tokens_ids_to_notes( | |
tokens=tokens, | |
beat_offset_idx=beat_offset_idx, | |
bars_per_batch=bars_per_batch, | |
cutoff_time_idx=cutoff_time_idx, | |
) | |
midi = self.notes_to_midi(notes, beatstep, offset_sec=beatstep[beat_offset_idx]) | |
return midi | |
# Taken from the original code | |
# Please see https://github.com/sweetcocoa/pop2piano/blob/fac11e8dcfc73487513f4588e8d0c22a22f2fdc5/midi_tokenizer.py#L257 | |
def relative_tokens_ids_to_notes(self, tokens: np.ndarray, start_idx: float, cutoff_time_idx: float = None): | |
""" | |
Converts relative tokens to notes which will then be used to create Pretty Midi objects. | |
Args: | |
tokens (`numpy.ndarray`): | |
Relative Tokens which will be converted to notes. | |
start_idx (`float`): | |
A parameter which denotes the starting index. | |
cutoff_time_idx (`float`, *optional*): | |
A parameter used while converting tokens to notes. | |
""" | |
words = [self._convert_id_to_token(token) for token in tokens] | |
current_idx = start_idx | |
current_velocity = 0 | |
note_onsets_ready = [None for i in range(sum([k.endswith("NOTE") for k in self.encoder.keys()]) + 1)] | |
notes = [] | |
for token_type, number in words: | |
if token_type == "TOKEN_SPECIAL": | |
if number == 1: | |
break | |
elif token_type == "TOKEN_TIME": | |
current_idx = token_time_to_note( | |
number=number, cutoff_time_idx=cutoff_time_idx, current_idx=current_idx | |
) | |
elif token_type == "TOKEN_VELOCITY": | |
current_velocity = number | |
elif token_type == "TOKEN_NOTE": | |
notes = token_note_to_note( | |
number=number, | |
current_velocity=current_velocity, | |
default_velocity=self.default_velocity, | |
note_onsets_ready=note_onsets_ready, | |
current_idx=current_idx, | |
notes=notes, | |
) | |
else: | |
raise ValueError("Token type not understood!") | |
for pitch, note_onset in enumerate(note_onsets_ready): | |
# force offset if no offset for each pitch | |
if note_onset is not None: | |
if cutoff_time_idx is None: | |
cutoff = note_onset + 1 | |
else: | |
cutoff = max(cutoff_time_idx, note_onset + 1) | |
offset_idx = max(current_idx, cutoff) | |
notes.append([note_onset, offset_idx, pitch, self.default_velocity]) | |
if len(notes) == 0: | |
return [] | |
else: | |
notes = np.array(notes) | |
note_order = notes[:, 0] * 128 + notes[:, 1] | |
notes = notes[note_order.argsort()] | |
return notes | |
def notes_to_midi(self, notes: np.ndarray, beatstep: np.ndarray, offset_sec: int = 0.0): | |
""" | |
Converts notes to Midi. | |
Args: | |
notes (`numpy.ndarray`): | |
This is used to create Pretty Midi objects. | |
beatstep (`numpy.ndarray`): | |
This is the extrapolated beatstep that we get from feature extractor. | |
offset_sec (`int`, *optional*, defaults to 0.0): | |
This represents the offset seconds which is used while creating each Pretty Midi Note. | |
""" | |
requires_backends(self, ["pretty_midi"]) | |
new_pm = pretty_midi.PrettyMIDI(resolution=384, initial_tempo=120.0) | |
new_inst = pretty_midi.Instrument(program=0) | |
new_notes = [] | |
for onset_idx, offset_idx, pitch, velocity in notes: | |
new_note = pretty_midi.Note( | |
velocity=velocity, | |
pitch=pitch, | |
start=beatstep[onset_idx] - offset_sec, | |
end=beatstep[offset_idx] - offset_sec, | |
) | |
new_notes.append(new_note) | |
new_inst.notes = new_notes | |
new_pm.instruments.append(new_inst) | |
new_pm.remove_invalid_notes() | |
return new_pm | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
""" | |
Saves the tokenizer's vocabulary dictionary to the provided save_directory. | |
Args: | |
save_directory (`str`): | |
A path to the directory where to saved. It will be created if it doesn't exist. | |
filename_prefix (`Optional[str]`, *optional*): | |
A prefix to add to the names of the files saved by the tokenizer. | |
""" | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
# Save the encoder. | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"] | |
) | |
with open(out_vocab_file, "w") as file: | |
file.write(json.dumps(self.encoder)) | |
return (out_vocab_file,) | |
def encode_plus( | |
self, | |
notes: Union[np.ndarray, List[pretty_midi.Note]], | |
truncation_strategy: Optional[TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
**kwargs, | |
) -> BatchEncoding: | |
r""" | |
This is the `encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer | |
generated token ids. It only works on a single batch, to process multiple batches please use | |
`batch_encode_plus` or `__call__` method. | |
Args: | |
notes (`numpy.ndarray` of shape `[sequence_length, 4]` or `list` of `pretty_midi.Note` objects): | |
This represents the midi notes. If `notes` is a `numpy.ndarray`: | |
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`. | |
If `notes` is a `list` containing `pretty_midi.Note` objects: | |
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`. | |
truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*): | |
Indicates the truncation strategy that is going to be used during truncation. | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
Returns: | |
`BatchEncoding` containing the tokens ids. | |
""" | |
requires_backends(self, ["pretty_midi"]) | |
# check if notes is a pretty_midi object or not, if yes then extract the attributes and put them into a numpy | |
# array. | |
if isinstance(notes[0], pretty_midi.Note): | |
notes = np.array( | |
[[each_note.start, each_note.end, each_note.pitch, each_note.velocity] for each_note in notes] | |
).reshape(-1, 4) | |
# to round up all the values to the closest int values. | |
notes = np.round(notes).astype(np.int32) | |
max_time_idx = notes[:, :2].max() | |
times = [[] for i in range((max_time_idx + 1))] | |
for onset, offset, pitch, velocity in notes: | |
times[onset].append([pitch, velocity]) | |
times[offset].append([pitch, 0]) | |
tokens = [] | |
current_velocity = 0 | |
for i, time in enumerate(times): | |
if len(time) == 0: | |
continue | |
tokens.append(self._convert_token_to_id(i, "TOKEN_TIME")) | |
for pitch, velocity in time: | |
velocity = int(velocity > 0) | |
if current_velocity != velocity: | |
current_velocity = velocity | |
tokens.append(self._convert_token_to_id(velocity, "TOKEN_VELOCITY")) | |
tokens.append(self._convert_token_to_id(pitch, "TOKEN_NOTE")) | |
total_len = len(tokens) | |
# truncation | |
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: | |
tokens, _, _ = self.truncate_sequences( | |
ids=tokens, | |
num_tokens_to_remove=total_len - max_length, | |
truncation_strategy=truncation_strategy, | |
**kwargs, | |
) | |
return BatchEncoding({"token_ids": tokens}) | |
def batch_encode_plus( | |
self, | |
notes: Union[np.ndarray, List[pretty_midi.Note]], | |
truncation_strategy: Optional[TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
**kwargs, | |
) -> BatchEncoding: | |
r""" | |
This is the `batch_encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer | |
generated token ids. It works on multiple batches by calling `encode_plus` multiple times in a loop. | |
Args: | |
notes (`numpy.ndarray` of shape `[batch_size, sequence_length, 4]` or `list` of `pretty_midi.Note` objects): | |
This represents the midi notes. If `notes` is a `numpy.ndarray`: | |
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`. | |
If `notes` is a `list` containing `pretty_midi.Note` objects: | |
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`. | |
truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*): | |
Indicates the truncation strategy that is going to be used during truncation. | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
Returns: | |
`BatchEncoding` containing the tokens ids. | |
""" | |
encoded_batch_token_ids = [] | |
for i in range(len(notes)): | |
encoded_batch_token_ids.append( | |
self.encode_plus( | |
notes[i], | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
**kwargs, | |
)["token_ids"] | |
) | |
return BatchEncoding({"token_ids": encoded_batch_token_ids}) | |
def __call__( | |
self, | |
notes: Union[ | |
np.ndarray, | |
List[pretty_midi.Note], | |
List[List[pretty_midi.Note]], | |
], | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
r""" | |
This is the `__call__` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer generated | |
token ids. | |
Args: | |
notes (`numpy.ndarray` of shape `[batch_size, max_sequence_length, 4]` or `list` of `pretty_midi.Note` objects): | |
This represents the midi notes. | |
If `notes` is a `numpy.ndarray`: | |
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`. | |
If `notes` is a `list` containing `pretty_midi.Note` objects: | |
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`. | |
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Activates and controls padding. Accepts the following values: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
Activates and controls truncation. Accepts the following values: | |
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or | |
to the maximum acceptable input length for the model if that argument is not provided. This will | |
truncate token by token, removing a token from the longest sequence in the pair if a pair of | |
sequences (or a batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths | |
greater than the model maximum admissible input size). | |
max_length (`int`, *optional*): | |
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to | |
`None`, this will use the predefined model maximum length if a maximum length is required by one of the | |
truncation/padding parameters. If the model has no specific maximum input length (like XLNet) | |
truncation/padding to a maximum length will be deactivated. | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable | |
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). | |
return_attention_mask (`bool`, *optional*): | |
Whether to return the attention mask. If left to the default, will return the attention mask according | |
to the specific tokenizer's default, defined by the `return_outputs` attribute. | |
[What are attention masks?](../glossary#attention-mask) | |
return_tensors (`str` or [`~file_utils.TensorType`], *optional*): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return Numpy `np.ndarray` objects. | |
verbose (`bool`, *optional*, defaults to `True`): | |
Whether or not to print more information and warnings. | |
Returns: | |
`BatchEncoding` containing the token_ids. | |
""" | |
# check if it is batched or not | |
# it is batched if its a list containing a list of `pretty_midi.Notes` where the outer list contains all the | |
# batches and the inner list contains all Notes for a single batch. Otherwise if np.ndarray is passed it will be | |
# considered batched if it has shape of `[batch_size, seqence_length, 4]` or ndim=3. | |
is_batched = notes.ndim == 3 if isinstance(notes, np.ndarray) else isinstance(notes[0], list) | |
# get the truncation and padding strategy | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
if is_batched: | |
# If the user has not explicitly mentioned `return_attention_mask` as False, we change it to True | |
return_attention_mask = True if return_attention_mask is None else return_attention_mask | |
token_ids = self.batch_encode_plus( | |
notes=notes, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
**kwargs, | |
) | |
else: | |
token_ids = self.encode_plus( | |
notes=notes, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
**kwargs, | |
) | |
# since we already have truncated sequnences we are just left to do padding | |
token_ids = self.pad( | |
token_ids, | |
padding=padding_strategy, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_tensors=return_tensors, | |
verbose=verbose, | |
) | |
return token_ids | |
def batch_decode( | |
self, | |
token_ids, | |
feature_extractor_output: BatchFeature, | |
return_midi: bool = True, | |
): | |
r""" | |
This is the `batch_decode` method for `Pop2PianoTokenizer`. It converts the token_ids generated by the | |
transformer to midi_notes and returns them. | |
Args: | |
token_ids (`Union[np.ndarray, torch.Tensor, tf.Tensor]`): | |
Output token_ids of `Pop2PianoConditionalGeneration` model. | |
feature_extractor_output (`BatchFeature`): | |
Denotes the output of `Pop2PianoFeatureExtractor.__call__`. It must contain `"beatstep"` and | |
`"extrapolated_beatstep"`. Also `"attention_mask_beatsteps"` and | |
`"attention_mask_extrapolated_beatstep"` | |
should be present if they were returned by the feature extractor. | |
return_midi (`bool`, *optional*, defaults to `True`): | |
Whether to return midi object or not. | |
Returns: | |
If `return_midi` is True: | |
- `BatchEncoding` containing both `notes` and `pretty_midi.pretty_midi.PrettyMIDI` objects. | |
If `return_midi` is False: | |
- `BatchEncoding` containing `notes`. | |
""" | |
# check if they have attention_masks(attention_mask, attention_mask_beatsteps, attention_mask_extrapolated_beatstep) or not | |
attention_masks_present = bool( | |
hasattr(feature_extractor_output, "attention_mask") | |
and hasattr(feature_extractor_output, "attention_mask_beatsteps") | |
and hasattr(feature_extractor_output, "attention_mask_extrapolated_beatstep") | |
) | |
# if we are processing batched inputs then we must need attention_masks | |
if not attention_masks_present and feature_extractor_output["beatsteps"].shape[0] > 1: | |
raise ValueError( | |
"attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep must be present " | |
"for batched inputs! But one of them were not present." | |
) | |
# check for length mismatch between inputs_embeds, beatsteps and extrapolated_beatstep | |
if attention_masks_present: | |
# since we know about the number of examples in token_ids from attention_mask | |
if ( | |
sum(feature_extractor_output["attention_mask"][:, 0] == 0) | |
!= feature_extractor_output["beatsteps"].shape[0] | |
or feature_extractor_output["beatsteps"].shape[0] | |
!= feature_extractor_output["extrapolated_beatstep"].shape[0] | |
): | |
raise ValueError( | |
"Length mistamtch between token_ids, beatsteps and extrapolated_beatstep! Found " | |
f"token_ids length - {token_ids.shape[0]}, beatsteps shape - {feature_extractor_output['beatsteps'].shape[0]} " | |
f"and extrapolated_beatsteps shape - {feature_extractor_output['extrapolated_beatstep'].shape[0]}" | |
) | |
if feature_extractor_output["attention_mask"].shape[0] != token_ids.shape[0]: | |
raise ValueError( | |
f"Found attention_mask of length - {feature_extractor_output['attention_mask'].shape[0]} but token_ids of length - {token_ids.shape[0]}" | |
) | |
else: | |
# if there is no attention mask present then it's surely a single example | |
if ( | |
feature_extractor_output["beatsteps"].shape[0] != 1 | |
or feature_extractor_output["extrapolated_beatstep"].shape[0] != 1 | |
): | |
raise ValueError( | |
"Length mistamtch of beatsteps and extrapolated_beatstep! Since attention_mask is not present the number of examples must be 1, " | |
f"But found beatsteps length - {feature_extractor_output['beatsteps'].shape[0]}, extrapolated_beatsteps length - {feature_extractor_output['extrapolated_beatstep'].shape[0]}." | |
) | |
if attention_masks_present: | |
# check for zeros(since token_ids are seperated by zero arrays) | |
batch_idx = np.where(feature_extractor_output["attention_mask"][:, 0] == 0)[0] | |
else: | |
batch_idx = [token_ids.shape[0]] | |
notes_list = [] | |
pretty_midi_objects_list = [] | |
start_idx = 0 | |
for index, end_idx in enumerate(batch_idx): | |
each_tokens_ids = token_ids[start_idx:end_idx] | |
# check where the whole example ended by searching for eos_token_id and getting the upper bound | |
each_tokens_ids = each_tokens_ids[:, : np.max(np.where(each_tokens_ids == int(self.eos_token))[1]) + 1] | |
beatsteps = feature_extractor_output["beatsteps"][index] | |
extrapolated_beatstep = feature_extractor_output["extrapolated_beatstep"][index] | |
# if attention mask is present then mask out real array/tensor | |
if attention_masks_present: | |
attention_mask_beatsteps = feature_extractor_output["attention_mask_beatsteps"][index] | |
attention_mask_extrapolated_beatstep = feature_extractor_output[ | |
"attention_mask_extrapolated_beatstep" | |
][index] | |
beatsteps = beatsteps[: np.max(np.where(attention_mask_beatsteps == 1)[0]) + 1] | |
extrapolated_beatstep = extrapolated_beatstep[ | |
: np.max(np.where(attention_mask_extrapolated_beatstep == 1)[0]) + 1 | |
] | |
each_tokens_ids = to_numpy(each_tokens_ids) | |
beatsteps = to_numpy(beatsteps) | |
extrapolated_beatstep = to_numpy(extrapolated_beatstep) | |
pretty_midi_object = self.relative_batch_tokens_ids_to_midi( | |
tokens=each_tokens_ids, | |
beatstep=extrapolated_beatstep, | |
bars_per_batch=self.num_bars, | |
cutoff_time_idx=(self.num_bars + 1) * 4, | |
) | |
for note in pretty_midi_object.instruments[0].notes: | |
note.start += beatsteps[0] | |
note.end += beatsteps[0] | |
notes_list.append(note) | |
pretty_midi_objects_list.append(pretty_midi_object) | |
start_idx += end_idx + 1 # 1 represents the zero array | |
if return_midi: | |
return BatchEncoding({"notes": notes_list, "pretty_midi_objects": pretty_midi_objects_list}) | |
return BatchEncoding({"notes": notes_list}) | |