Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/speecht5
/processing_speecht5.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Speech processor class for SpeechT5.""" | |
from ...processing_utils import ProcessorMixin | |
class SpeechT5Processor(ProcessorMixin): | |
r""" | |
Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor. | |
[`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See | |
the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information. | |
Args: | |
feature_extractor (`SpeechT5FeatureExtractor`): | |
An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input. | |
tokenizer (`SpeechT5Tokenizer`): | |
An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input. | |
""" | |
feature_extractor_class = "SpeechT5FeatureExtractor" | |
tokenizer_class = "SpeechT5Tokenizer" | |
def __init__(self, feature_extractor, tokenizer): | |
super().__init__(feature_extractor, tokenizer) | |
def __call__(self, *args, **kwargs): | |
""" | |
Processes audio and text input, as well as audio and text targets. | |
You can process audio by using the argument `audio`, or process audio targets by using the argument | |
`audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's | |
[`~SpeechT5FeatureExtractor.__call__`]. | |
You can process text by using the argument `text`, or process text labels by using the argument `text_target`. | |
This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`]. | |
Valid input combinations are: | |
- `text` only | |
- `audio` only | |
- `text_target` only | |
- `audio_target` only | |
- `text` and `audio_target` | |
- `audio` and `audio_target` | |
- `text` and `text_target` | |
- `audio` and `text_target` | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
audio = kwargs.pop("audio", None) | |
text = kwargs.pop("text", None) | |
text_target = kwargs.pop("text_target", None) | |
audio_target = kwargs.pop("audio_target", None) | |
sampling_rate = kwargs.pop("sampling_rate", None) | |
if audio is not None and text is not None: | |
raise ValueError( | |
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" | |
) | |
if audio_target is not None and text_target is not None: | |
raise ValueError( | |
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" | |
) | |
if audio is None and audio_target is None and text is None and text_target is None: | |
raise ValueError( | |
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." | |
) | |
if audio is not None: | |
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) | |
elif text is not None: | |
inputs = self.tokenizer(text, **kwargs) | |
else: | |
inputs = None | |
if audio_target is not None: | |
targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs) | |
labels = targets["input_values"] | |
elif text_target is not None: | |
targets = self.tokenizer(text_target, **kwargs) | |
labels = targets["input_ids"] | |
else: | |
targets = None | |
if inputs is None: | |
return targets | |
if targets is not None: | |
inputs["labels"] = labels | |
decoder_attention_mask = targets.get("attention_mask") | |
if decoder_attention_mask is not None: | |
inputs["decoder_attention_mask"] = decoder_attention_mask | |
return inputs | |
def pad(self, *args, **kwargs): | |
""" | |
Collates the audio and text inputs, as well as their targets, into a padded batch. | |
Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded | |
by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`]. | |
Valid input combinations are: | |
- `input_ids` only | |
- `input_values` only | |
- `labels` only, either log-mel spectrograms or text tokens | |
- `input_ids` and log-mel spectrogram `labels` | |
- `input_values` and text `labels` | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
input_values = kwargs.pop("input_values", None) | |
input_ids = kwargs.pop("input_ids", None) | |
labels = kwargs.pop("labels", None) | |
if input_values is not None and input_ids is not None: | |
raise ValueError("Cannot process both `input_values` and `input_ids` inputs.") | |
if input_values is None and input_ids is None and labels is None: | |
raise ValueError( | |
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." | |
) | |
if input_values is not None: | |
inputs = self.feature_extractor.pad(input_values, *args, **kwargs) | |
elif input_ids is not None: | |
inputs = self.tokenizer.pad(input_ids, **kwargs) | |
else: | |
inputs = None | |
if labels is not None: | |
if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]): | |
targets = self.tokenizer.pad(labels, **kwargs) | |
labels = targets["input_ids"] | |
else: | |
feature_size_hack = self.feature_extractor.feature_size | |
self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins | |
targets = self.feature_extractor.pad(labels, *args, **kwargs) | |
self.feature_extractor.feature_size = feature_size_hack | |
labels = targets["input_values"] | |
else: | |
targets = None | |
if inputs is None: | |
return targets | |
if targets is not None: | |
inputs["labels"] = labels | |
decoder_attention_mask = targets.get("attention_mask") | |
if decoder_attention_mask is not None: | |
inputs["decoder_attention_mask"] = decoder_attention_mask | |
return inputs | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer | |
to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |