Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/tvp
/modeling_tvp.py
# coding=utf-8 | |
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License=, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing=, software | |
# distributed under the License is distributed on an "AS IS" BASIS=, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch TVP Model""" | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import prune_linear_layer | |
from ...utils import logging | |
from ...utils.backbone_utils import load_backbone | |
from .configuration_tvp import TvpConfig | |
logger = logging.get_logger(__name__) | |
class TvpVideoGroundingOutput(ModelOutput): | |
""" | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
Temporal-Distance IoU loss for video grounding. | |
logits (`torch.FloatTensor` of shape `(batch_size, 2)`): | |
Contains start_time/duration and end_time/duration. It is the time slot of the videos corresponding to the | |
input texts. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class TvpLoss(nn.Module): | |
""" | |
This class computes the losses for `TvpForVideoGrounding`. The process happens in two steps: 1) we compute | |
hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched | |
ground-truth / prediction (supervise class and box). | |
Args: | |
losses (`List[str]`): | |
List of all the losses to be applied. | |
""" | |
def __init__(self, losses): | |
super().__init__() | |
self.loss_map = { | |
"iou": self.loss_iou, | |
"distance": self.loss_distance, | |
"duration": self.loss_duration, | |
} | |
for loss in losses: | |
if loss not in self.loss_map: | |
raise ValueError(f"Loss {loss} not supported") | |
self.losses = losses | |
def loss_iou(self, start_time, end_time, candidates_start_time, candidates_end_time, duration): | |
""" | |
Measure the intersection over union. | |
""" | |
inter = torch.min(candidates_end_time, end_time) - torch.max(candidates_start_time, start_time) | |
union = torch.max(candidates_end_time, end_time) - torch.min(candidates_start_time, start_time) | |
iou = 1 - inter.clamp(min=0) / union | |
return iou | |
def loss_distance(self, start_time, end_time, candidates_start_time, candidates_end_time, duration): | |
""" | |
Measure the distance of mid points. | |
""" | |
mid_candidates = torch.div(torch.add(candidates_start_time, candidates_end_time), 2.0) | |
mid_groundtruth = torch.div(torch.add(start_time, end_time), 2.0) | |
distance_diff = torch.div( | |
torch.max(mid_candidates, mid_groundtruth) - torch.min(mid_candidates, mid_groundtruth), duration | |
).clamp(min=0.2) | |
return distance_diff | |
def loss_duration(self, start_time, end_time, candidates_start_time, candidates_end_time, duration): | |
""" | |
Measure the difference of duration. | |
""" | |
duration_candidates = torch.sub(candidates_end_time, candidates_start_time) | |
duration_groundtruth = torch.sub(end_time, start_time) | |
duration_diff = torch.square(torch.div(torch.sub(duration_candidates, duration_groundtruth), duration)) | |
duration_diff = duration_diff.clamp(min=0.4) | |
return duration_diff | |
def forward(self, logits, labels): | |
""" | |
This performs the loss computation. | |
Args: | |
logits (`torch.FloatTensor`): | |
The output logits of head module. | |
labels (`List[torch.FloatTensor]`): | |
List of tensors ([start, end, duration]), which contains start time, end time of the video corresponding to the text, and also the duration. | |
""" | |
duration, start_time, end_time = labels | |
candidates = torch.mul(logits, duration) | |
candidates_start_time, candidates_end_time = candidates[:, 0].float(), candidates[:, 1].float() | |
losses_dict = {} | |
for loss in self.losses: | |
losses_dict.update( | |
{loss: self.loss_map[loss](start_time, end_time, candidates_start_time, candidates_end_time, duration)} | |
) | |
return losses_dict | |
class TvpVisionModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.backbone = load_backbone(config) | |
if config.backbone_config is not None: | |
in_channels = config.backbone_config.hidden_sizes[-1] | |
elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_sizes"): | |
in_channels = self.backbone.config.hidden_sizes[-1] | |
elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_size"): | |
in_channels = self.backbone.config.hidden_size | |
else: | |
raise ValueError("Backbone config not found") | |
self.grid_encoder_conv = nn.Conv2d( | |
in_channels, | |
config.hidden_size, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
groups=1, | |
bias=False, | |
) | |
def forward(self, pixel_values): | |
batch_size, num_frames, num_channels, height, width = pixel_values.shape | |
# (batch_size * num_frames, num_channels, height, width) | |
pixel_values = pixel_values.view(batch_size * num_frames, num_channels, height, width) | |
grid_feat_outputs = self.backbone(pixel_values)["feature_maps"][0] | |
grid = self.grid_encoder_conv(grid_feat_outputs) | |
grid = nn.functional.max_pool2d(grid, kernel_size=2, stride=2) | |
grid = nn.functional.relu(grid, inplace=True) | |
new_channel, new_height, new_width = grid.shape[-3:] | |
# (batch_size, num_frames, num_channels, height, width) | |
grid = grid.view(batch_size, num_frames, new_channel, new_height, new_width) | |
# (batch_size, num_frames, height, width, num_channels) | |
grid = grid.permute(0, 1, 3, 4, 2) | |
return grid | |
class TvpVisualInputEmbedding(nn.Module): | |
""" | |
Takes input of both image and video (multi-frame) | |
""" | |
def __init__(self, config): | |
super().__init__() | |
# sequence embedding | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.row_position_embeddings = nn.Embedding(config.max_grid_row_position_embeddings, config.hidden_size) | |
self.col_position_embeddings = nn.Embedding(config.max_grid_col_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(1, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.max_grid_row_position_embeddings = config.max_grid_row_position_embeddings | |
self.max_grid_col_position_embeddings = config.max_grid_col_position_embeddings | |
def interpolate_pos_encoding(self, embedding: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained pad weights , to be able to use the model on collection of high | |
resolution images (high resolution videos). | |
""" | |
h0 = w0 = 1 | |
# if height dimension is to be interpolated | |
if height > self.max_grid_row_position_embeddings: | |
h0 = height / self.max_grid_row_position_embeddings | |
# if width dimension is to be interpolated | |
if width > self.max_grid_col_position_embeddings: | |
w0 = width / self.max_grid_col_position_embeddings | |
embedding = embedding.permute(0, 3, 1, 2) # (batch_size, hidden_dim, height, width) | |
embedding = nn.functional.interpolate( | |
embedding, | |
scale_factor=(h0, w0), | |
mode="bicubic", | |
align_corners=False, | |
) | |
embedding = embedding.permute(0, 2, 3, 1) # (batch_size, height, width, hidden_dim) | |
return embedding | |
def add_2d_positional_embeddings(self, grid, interpolate_pos_encoding: bool = False): | |
""" | |
Args: | |
grid: (batch_size, height, width, hidden_dim) | |
interpolate_pos_encoding: (`bool`, *optional*, defaults to `False`): | |
Whether to interpolate the pre-trained position encodings. | |
Returns: | |
grid + col_position_embeddings.view(*col_shape): (batch_size, *, height, width, hidden_dim) | |
""" | |
batch_size, height, width, hidden_dim = grid.shape | |
# add row-wise position embeddings | |
# (height, ) | |
row_height = min(self.max_grid_row_position_embeddings, height) | |
row_position_ids = torch.arange(row_height, dtype=torch.long, device=grid.device) | |
# (height, hidden_dim) | |
row_position_embeddings = self.row_position_embeddings(row_position_ids) | |
row_shape = (1,) * (len(grid.shape) - 3) + (row_height, 1, hidden_dim) | |
# (batch_size, height, 1, hidden_dim) | |
row_position_embeddings = row_position_embeddings.view(*row_shape) | |
# add column-wise position embeddings | |
row_width = min(self.max_grid_col_position_embeddings, width) | |
col_position_ids = torch.arange(row_width, dtype=torch.long, device=grid.device) | |
# (width, hidden_dim) | |
col_position_embeddings = self.col_position_embeddings(col_position_ids) | |
col_shape = (batch_size, 1, row_width, hidden_dim) | |
# (batch_size, 1, width, hidden_dim) | |
col_position_embeddings = col_position_embeddings.view(*col_shape) | |
# (batch_size, height, width, hidden_dim) | |
positional_embeddings = row_position_embeddings + col_position_embeddings | |
# This interpolation gets triggered ONLY when the input image dim is larger in any dimenstion than the original position embeddings | |
if interpolate_pos_encoding and ( | |
height > self.max_grid_row_position_embeddings or width > self.max_grid_col_position_embeddings | |
): | |
grid = grid + self.interpolate_pos_encoding(positional_embeddings, height, width) | |
else: | |
grid = grid + positional_embeddings | |
return grid | |
def forward(self, grid, interpolate_pos_encoding: bool = False): | |
""" | |
Args: | |
grid: Array of shape (batch_size, num_frames, height, width, num_channels). | |
It contains processed frames extracted from videos, and is generated by Tvp image preprocessor. Note, | |
num_frames can be 1 | |
interpolate_pos_encoding: (bool, *optional*, defaults to `False`): | |
Whether to interpolate the pre-trained position encodings. | |
Returns: | |
embeddings: The embedding of grid with size (batch_size, height*width, num_channels) | |
""" | |
batch_size, num_frames, height, width, num_channels = grid.shape | |
# temporal mean pooling, (batch_size, height, width, hidden_size) | |
grid = grid.mean(1) | |
grid = self.add_2d_positional_embeddings(grid, interpolate_pos_encoding=interpolate_pos_encoding) | |
# image token sequence, (batch_size, height*width, num_channels) | |
visual_tokens = grid.view(batch_size, -1, num_channels) | |
visual_tokens_shape = visual_tokens.shape[:-1] | |
device = visual_tokens.device | |
# image token type embeddings. | |
token_type_ids = torch.zeros(visual_tokens_shape, dtype=torch.long, device=device) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = visual_tokens + token_type_embeddings | |
embeddings = self.layer_norm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class TvpTextInputEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if position_ids is None: | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
embeddings = self.layer_norm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class TvpAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.attn_dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.num_attention_heads, self.attention_head_size) | |
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads | |
for head in heads: | |
# Compute how many pruned heads are before the head and move the index accordingly | |
head = head - sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.query = prune_linear_layer(self.query, index) | |
self.key = prune_linear_layer(self.key, index) | |
self.value = prune_linear_layer(self.value, index) | |
self.dense = prune_linear_layer(self.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.num_attention_heads = self.num_attention_heads - len(heads) | |
self.all_head_size = self.attention_head_size * self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _reshape(self, tensor: torch.Tensor, sequence_length: int, batch_size: int): | |
return ( | |
tensor.view(batch_size, sequence_length, self.num_attention_heads, self.attention_head_size) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions: Optional[bool] = None, | |
): | |
batch_size, sequence_length = hidden_states.shape[:2] | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self._reshape(mixed_query_layer, sequence_length, batch_size) | |
key_layer = self._reshape(mixed_key_layer, sequence_length, batch_size) | |
value_layer = self._reshape(mixed_value_layer, sequence_length, batch_size) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.attn_dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
attn_output = torch.matmul(attention_probs, value_layer) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, sequence_length, self.all_head_size) | |
attn_output = self.dense(attn_output) | |
attn_output = self.dropout(attn_output) | |
attn_output = self.layer_norm(attn_output + hidden_states) | |
# add attentions if we output them | |
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Tvp | |
class TvpIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class TvpOutputLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.layer_norm(hidden_states + input_tensor) | |
return hidden_states | |
class TvpEncodeLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = TvpAttention(config) | |
self.intermediate = TvpIntermediate(config) | |
self.output = TvpOutputLayer(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions: Optional[bool] = None, | |
): | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
outputs = (layer_output,) + outputs | |
return outputs | |
class TvpEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([TvpEncodeLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
all_hidden_states = () | |
all_attentions = () | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
(head_mask[i] if head_mask is not None else None), | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
outputs = (hidden_states,) | |
if output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if output_attentions: | |
outputs = outputs + (all_attentions,) | |
return outputs # last-layer hidden state, (all hidden states), (all attentions) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states if output_hidden_states else None, | |
attentions=all_attentions if output_attentions else None, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Tvp | |
class TvpPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class TvpPreTrainedModel(PreTrainedModel): | |
"""An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
config_class = TvpConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
if isinstance(module, nn.Conv2d): | |
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
TVP_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`TvpConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
TVP_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See | |
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input | |
IDs?](../glossary#input-ids) | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`TvpImageProcessor`]. See [`TvpImageProcessor.__call__`] | |
for details. | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): | |
Whether to interpolate the pre-trained image pad prompter encodings and positional encodings. | |
""" | |
class TvpFrameDownPadPrompter(nn.Module): | |
""" | |
Pad frames extracted from videos only at the bottom. | |
""" | |
def __init__(self, config): | |
if config.visual_prompter_apply not in ("add", "replace", "remove"): | |
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)") | |
super().__init__() | |
self.visual_prompt_size = config.visual_prompt_size | |
self.frame_num = config.frame_num | |
self.max_img_size = config.max_img_size | |
self.visual_prompter_apply = config.visual_prompter_apply | |
self.pad_down = nn.Parameter( | |
torch.randn([1, config.frame_num, 3, config.visual_prompt_size, config.max_img_size]) | |
) | |
def forward(self, pixel_values): | |
if self.visual_prompter_apply != "add": | |
visual_prompt_mask = torch.ones( | |
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device | |
) | |
visual_prompt_mask[self.max_img_size - self.visual_prompt_size : self.max_img_size, :] = 0.0 | |
pixel_values *= visual_prompt_mask | |
if self.visual_prompter_apply != "remove": | |
prompt = torch.zeros( | |
[pixel_values.shape[0], pixel_values.shape[1], 3, self.max_img_size, self.max_img_size], | |
device=pixel_values.device, | |
) | |
start_point = self.max_img_size - self.visual_prompt_size | |
prompt[:, :, :, start_point : self.max_img_size, :] = self.pad_down | |
pixel_values += prompt.to(pixel_values.dtype) | |
return pixel_values | |
class TvpFramePadPrompter(nn.Module): | |
""" | |
Pad frames extracted from videos in the surroundings. | |
""" | |
def __init__(self, config): | |
if config.visual_prompter_apply not in ("add", "replace", "remove"): | |
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)") | |
super().__init__() | |
self.num_frames = config.num_frames | |
self.max_img_size = config.max_img_size | |
self.visual_prompter_apply = config.visual_prompter_apply | |
self.base_size = config.max_img_size - config.visual_prompt_size * 2 | |
self.pad_up = nn.Parameter( | |
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size]) | |
) | |
self.pad_down = nn.Parameter( | |
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size]) | |
) | |
self.pad_left = nn.Parameter( | |
torch.randn( | |
[ | |
1, | |
config.num_frames, | |
3, | |
config.max_img_size - config.visual_prompt_size * 2, | |
config.visual_prompt_size, | |
] | |
) | |
) | |
self.pad_right = nn.Parameter( | |
torch.randn( | |
[ | |
1, | |
config.num_frames, | |
3, | |
config.max_img_size - config.visual_prompt_size * 2, | |
config.visual_prompt_size, | |
] | |
) | |
) | |
def interpolate_pad_encoding(self, prompt: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained pad weights, to be able to use the model on collection of high | |
resolution images (high resolution videos). | |
""" | |
# creates scale factor from height and width of original image wrt to the config.max_img_size | |
h0, w0 = height / self.max_img_size, width / self.max_img_size | |
batch, num_frames, channels, prompt_height, prompt_width = prompt.shape | |
# reshaping the batch and num_frames dimension into a single one (i.e (b,frames,c,h,w)-->(b*frames,c,h,w)), to apply bicubic interpolation | |
prompt = prompt.reshape(batch * num_frames, channels, prompt_height, prompt_width) | |
prompt = nn.functional.interpolate( | |
prompt, | |
scale_factor=(h0, w0), | |
mode="bicubic", | |
align_corners=False, | |
) | |
# reversing back to (batch,frames,channels,height,width), where height and width is the new interpolated height and width | |
prompt = prompt.reshape(batch, num_frames, channels, height, width) | |
return prompt | |
def forward(self, pixel_values, interpolate_pad_encoding: bool = False): | |
height, width = ( | |
(pixel_values.shape[-2], pixel_values.shape[-1]) | |
if interpolate_pad_encoding | |
else (self.max_img_size, self.max_img_size) | |
) | |
if self.visual_prompter_apply not in ("add", "remove", "replace"): | |
raise ValueError(f"Invalid visual_prompter_apply value {self.visual_prompter_apply}") | |
if self.visual_prompter_apply in ("replace", "remove"): | |
visual_prompt_mask = torch.ones([height, width], dtype=pixel_values.dtype, device=pixel_values.device) | |
pixel_values *= visual_prompt_mask | |
if self.visual_prompter_apply in ("replace", "add"): | |
base = torch.zeros(1, self.num_frames, 3, self.base_size, self.base_size, device=pixel_values.device) | |
prompt = torch.cat([self.pad_left, base, self.pad_right], dim=4) | |
prompt = torch.cat([self.pad_up, prompt, self.pad_down], dim=3) | |
prompt = torch.cat(pixel_values.size(0) * [prompt]) | |
if interpolate_pad_encoding: | |
prompt = self.interpolate_pad_encoding(prompt, height, width) | |
pixel_values = pixel_values + prompt.to(pixel_values.dtype) | |
return pixel_values | |
TVP_PROMPTER_CLASSES_MAPPING = { | |
"framedownpad": TvpFrameDownPadPrompter, | |
"framepad": TvpFramePadPrompter, | |
} | |
class TvpModel(TvpPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.vision_model = TvpVisionModel(config) | |
self.embeddings = TvpTextInputEmbeddings(config) | |
self.visual_embeddings = TvpVisualInputEmbedding(config) | |
self.encoder = TvpEncoder(config) | |
self.pooler = TvpPooler(config) | |
self.text_prompt = nn.Parameter(torch.randn([1, 10, config.hidden_size])) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
if config.visual_prompter_type not in TVP_PROMPTER_CLASSES_MAPPING: | |
raise ValueError("`visual_prompter_type` must be in (framedownpad, framepad)") | |
self.visual_prompter = TVP_PROMPTER_CLASSES_MAPPING[config.visual_prompter_type](config) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
"""Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
): | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers import AutoConfig, AutoTokenizer, TvpModel | |
>>> model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp") | |
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp") | |
>>> pixel_values = torch.rand(1, 1, 3, 448, 448) | |
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt") | |
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
# Add visual prompt, it compensates for the spatiotemporal information loss in 2D visual features. | |
pixel_values = self.vision_model( | |
self.visual_prompter(pixel_values, interpolate_pad_encoding=interpolate_pos_encoding) | |
) | |
# (batch_size, sequence_length, hidden_size) | |
text_embedding_output = self.embeddings(input_ids=input_ids) | |
# (batch_size, visual_sequence_length, hidden_size) | |
visual_embedding_output = self.visual_embeddings( | |
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding | |
) | |
if attention_mask is not None: | |
# (batch_size, visual_sequence_length) | |
visual_attention_mask = attention_mask.new_ones(visual_embedding_output.shape[:2]) | |
pt_mask = torch.ones(attention_mask.shape[0], 10).to( | |
device=attention_mask.device, dtype=attention_mask.dtype | |
) | |
attention_mask = torch.cat([pt_mask, attention_mask, visual_attention_mask], dim=-1) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size()).to(input_ids.device) | |
text_prompt = self.text_prompt.expand(text_embedding_output.shape[0], -1, -1) | |
# (batch_size, sequence_length + visual_sequence_length, hidden_size) | |
embedding_output = torch.cat([text_prompt, text_embedding_output, visual_embedding_output], dim=1) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=attention_mask, | |
head_mask=self.get_head_mask(head_mask, self.config.num_hidden_layers), | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0] | |
pooled_output = self.pooler(last_hidden_state) | |
last_hidden_state = self.dropout(last_hidden_state) | |
pooled_output = self.dropout(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class TvpVideoGroundingHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.layer_0 = nn.Linear(config.hidden_size, config.hidden_size * 2) | |
self.layer_1 = nn.Linear(config.hidden_size * 2, 2) | |
self.activation_0 = nn.ReLU() | |
self.activation_1 = nn.Sigmoid() | |
def forward(self, pooler_output): | |
logits = self.activation_0(self.layer_0(pooler_output)) | |
logits = self.activation_1(self.layer_1(logits)) | |
return logits | |
class TvpForVideoGrounding(TvpPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.model = TvpModel(config) | |
self.video_grounding_head = TvpVideoGroundingHead(config) | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
labels: Tuple[torch.Tensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
): | |
r""" | |
labels (`torch.FloatTensor` of shape `(batch_size, 3)`, *optional*): | |
The labels contains duration, start time, and end time of the video corresponding to the text. | |
Returns: | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers import AutoConfig, AutoTokenizer, TvpForVideoGrounding | |
>>> model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp") | |
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp") | |
>>> pixel_values = torch.rand(1, 1, 3, 448, 448) | |
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt") | |
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
outputs = self.model( | |
input_ids, | |
pixel_values, | |
attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
) | |
pooler_output = outputs[1] | |
logits = self.video_grounding_head(pooler_output) | |
loss = None | |
if labels is not None: | |
criterion = TvpLoss(["iou", "distance", "duration"]) | |
criterion.to(self.device) | |
loss_dict = criterion(logits, labels) | |
loss = ( | |
loss_dict["iou"] | |
+ self.config.distance_loss_weight * loss_dict["distance"] | |
+ self.config.duration_loss_weight * loss_dict["duration"] | |
) | |
if not return_dict: | |
outputs = (logits,) + outputs[2:] | |
if loss is not None: | |
outputs = (loss,) + outputs | |
return outputs | |
return TvpVideoGroundingOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |