Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/wavlm
/modeling_wavlm.py
# coding=utf-8 | |
# Copyright 2021 The Fairseq Authors, Microsoft Research, and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch WavLM model.""" | |
import math | |
import warnings | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...integrations.deepspeed import is_deepspeed_zero3_enabled | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
CausalLMOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
Wav2Vec2BaseModelOutput, | |
XVectorOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_peft_available, | |
logging, | |
) | |
from .configuration_wavlm import WavLMConfig | |
logger = logging.get_logger(__name__) | |
_HIDDEN_STATES_START_POSITION = 2 | |
# General docstring | |
_CONFIG_FOR_DOC = "WavLMConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "patrickvonplaten/wavlm-libri-clean-100h-base-plus" | |
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768] | |
# CTC docstring | |
_CTC_EXPECTED_OUTPUT = "'mister quilter is the aposle of the middle classes and we are glad to welcome his gospel'" | |
_CTC_EXPECTED_LOSS = 12.51 | |
# Frame class docstring | |
_FRAME_CLASS_CHECKPOINT = "microsoft/wavlm-base-plus-sd" | |
_FRAME_EXPECTED_OUTPUT = [0, 0] | |
# Speaker Verification docstring | |
_XVECTOR_CHECKPOINT = "microsoft/wavlm-base-plus-sv" | |
_XVECTOR_EXPECTED_OUTPUT = 0.97 | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.LongTensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for | |
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on | |
CPU as part of the preprocessing during training. | |
Args: | |
shape: The shape for which to compute masks. This should be of a tuple of size 2 where | |
the first element is the batch size and the second element is the length of the axis to span. | |
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of | |
independently generated mask spans of length `mask_length` is computed by | |
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the | |
actual percentage will be smaller. | |
mask_length: size of the mask | |
min_masks: minimum number of masked spans | |
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of | |
each batch dimension. | |
""" | |
batch_size, sequence_length = shape | |
if mask_length < 1: | |
raise ValueError("`mask_length` has to be bigger than 0.") | |
if mask_length > sequence_length: | |
raise ValueError( | |
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" | |
f" and `sequence_length`: {sequence_length}`" | |
) | |
# epsilon is used for probabilistic rounding | |
epsilon = np.random.rand(1).item() | |
def compute_num_masked_span(input_length): | |
"""Given input length, compute how many spans should be masked""" | |
num_masked_span = int(mask_prob * input_length / mask_length + epsilon) | |
num_masked_span = max(num_masked_span, min_masks) | |
# make sure num masked span <= sequence_length | |
if num_masked_span * mask_length > sequence_length: | |
num_masked_span = sequence_length // mask_length | |
# make sure num_masked span is also <= input_length - (mask_length - 1) | |
if input_length - (mask_length - 1) < num_masked_span: | |
num_masked_span = max(input_length - (mask_length - 1), 0) | |
return num_masked_span | |
# compute number of masked spans in batch | |
input_lengths = ( | |
attention_mask.sum(-1).detach().tolist() | |
if attention_mask is not None | |
else [sequence_length for _ in range(batch_size)] | |
) | |
# SpecAugment mask to fill | |
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) | |
spec_aug_mask_idxs = [] | |
max_num_masked_span = compute_num_masked_span(sequence_length) | |
if max_num_masked_span == 0: | |
return spec_aug_mask | |
for input_length in input_lengths: | |
# compute num of masked spans for this input | |
num_masked_span = compute_num_masked_span(input_length) | |
# get random indices to mask | |
spec_aug_mask_idx = np.random.choice( | |
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False | |
) | |
# pick first sampled index that will serve as a dummy index to pad vector | |
# to ensure same dimension for all batches due to probabilistic rounding | |
# Picking first sample just pads those vectors twice. | |
if len(spec_aug_mask_idx) == 0: | |
# this case can only happen if `input_length` is strictly smaller then | |
# `sequence_length` in which case the last token has to be a padding | |
# token which we can use as a dummy mask id | |
dummy_mask_idx = sequence_length - 1 | |
else: | |
dummy_mask_idx = spec_aug_mask_idx[0] | |
spec_aug_mask_idx = np.concatenate( | |
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] | |
) | |
spec_aug_mask_idxs.append(spec_aug_mask_idx) | |
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) | |
# expand masked indices to masked spans | |
spec_aug_mask_idxs = np.broadcast_to( | |
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) | |
# add offset to the starting indexes so that indexes now create a span | |
offsets = np.arange(mask_length)[None, None, :] | |
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( | |
batch_size, max_num_masked_span * mask_length | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
# ensure that we cannot have indices larger than sequence_length | |
if spec_aug_mask_idxs.max() > sequence_length - 1: | |
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 | |
# scatter indices to mask | |
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) | |
return spec_aug_mask | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->WavLM | |
class WavLMNoLayerNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->WavLM | |
class WavLMLayerNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = hidden_states.transpose(-2, -1) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = hidden_states.transpose(-2, -1) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->WavLM | |
class WavLMGroupNormConvLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 | |
self.out_conv_dim = config.conv_dim[layer_id] | |
self.conv = nn.Conv1d( | |
self.in_conv_dim, | |
self.out_conv_dim, | |
kernel_size=config.conv_kernel[layer_id], | |
stride=config.conv_stride[layer_id], | |
bias=config.conv_bias, | |
) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->WavLM | |
class WavLMPositionalConvEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
config.hidden_size, | |
config.hidden_size, | |
kernel_size=config.num_conv_pos_embeddings, | |
padding=config.num_conv_pos_embeddings // 2, | |
groups=config.num_conv_pos_embedding_groups, | |
) | |
weight_norm = nn.utils.weight_norm | |
if hasattr(nn.utils.parametrizations, "weight_norm"): | |
weight_norm = nn.utils.parametrizations.weight_norm | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed | |
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): | |
self.conv = weight_norm(self.conv, name="weight", dim=2) | |
if hasattr(self.conv, "parametrizations"): | |
weight_g = self.conv.parametrizations.weight.original0 | |
weight_v = self.conv.parametrizations.weight.original1 | |
else: | |
weight_g = self.conv.weight_g | |
weight_v = self.conv.weight_v | |
deepspeed.zero.register_external_parameter(self, weight_v) | |
deepspeed.zero.register_external_parameter(self, weight_g) | |
else: | |
self.conv = weight_norm(self.conv, name="weight", dim=2) | |
self.padding = WavLMSamePadLayer(config.num_conv_pos_embeddings) | |
self.activation = ACT2FN[config.feat_extract_activation] | |
def forward(self, hidden_states): | |
hidden_states = hidden_states.transpose(1, 2) | |
hidden_states = self.conv(hidden_states) | |
hidden_states = self.padding(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->WavLM | |
class WavLMSamePadLayer(nn.Module): | |
def __init__(self, num_conv_pos_embeddings): | |
super().__init__() | |
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 | |
def forward(self, hidden_states): | |
if self.num_pad_remove > 0: | |
hidden_states = hidden_states[:, :, : -self.num_pad_remove] | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->WavLM | |
class WavLMFeatureEncoder(nn.Module): | |
"""Construct the features from raw audio waveform""" | |
def __init__(self, config): | |
super().__init__() | |
if config.feat_extract_norm == "group": | |
conv_layers = [WavLMGroupNormConvLayer(config, layer_id=0)] + [ | |
WavLMNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) | |
] | |
elif config.feat_extract_norm == "layer": | |
conv_layers = [WavLMLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] | |
else: | |
raise ValueError( | |
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" | |
) | |
self.conv_layers = nn.ModuleList(conv_layers) | |
self.gradient_checkpointing = False | |
self._requires_grad = True | |
def _freeze_parameters(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
self._requires_grad = False | |
def forward(self, input_values): | |
hidden_states = input_values[:, None] | |
# make sure hidden_states require grad for gradient_checkpointing | |
if self._requires_grad and self.training: | |
hidden_states.requires_grad = True | |
for conv_layer in self.conv_layers: | |
if self._requires_grad and self.gradient_checkpointing and self.training: | |
hidden_states = self._gradient_checkpointing_func( | |
conv_layer.__call__, | |
hidden_states, | |
) | |
else: | |
hidden_states = conv_layer(hidden_states) | |
return hidden_states | |
class WavLMFeatureExtractor(WavLMFeatureEncoder): | |
def __init__(self, config): | |
super().__init__(config) | |
warnings.warn( | |
f"The class `{self.__class__.__name__}` has been depreciated " | |
"and will be removed in Transformers v5. " | |
f"Use `{self.__class__.__bases__[0].__name__}` instead.", | |
FutureWarning, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->WavLM | |
class WavLMFeatureProjection(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) | |
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) | |
self.dropout = nn.Dropout(config.feat_proj_dropout) | |
def forward(self, hidden_states): | |
# non-projected hidden states are needed for quantization | |
norm_hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.projection(norm_hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states, norm_hidden_states | |
class WavLMAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
num_buckets: int = 320, | |
max_distance: int = 800, | |
has_relative_position_bias: bool = True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.out_proj = nn.Linear(embed_dim, embed_dim) | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.gru_rel_pos_const = nn.Parameter(torch.ones(1, self.num_heads, 1, 1)) | |
self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8) | |
if has_relative_position_bias: | |
self.rel_attn_embed = nn.Embedding(self.num_buckets, self.num_heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_bias: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
index=0, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Attention layer with relative attention""" | |
bsz, tgt_len, _ = hidden_states.size() | |
# first pass of attention layer creates position bias | |
if position_bias is None: | |
position_bias = self.compute_bias(tgt_len, tgt_len) | |
position_bias = ( | |
position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, tgt_len) | |
) | |
# Compute relative position bias: | |
# 1) get reshape hidden_states | |
gated_hidden_states = hidden_states.view(hidden_states.shape[:-1] + (self.num_heads, -1)) | |
gated_hidden_states = gated_hidden_states.permute(0, 2, 1, 3) | |
# 2) project hidden states | |
relative_position_proj = self.gru_rel_pos_linear(gated_hidden_states) | |
relative_position_proj = relative_position_proj.view(gated_hidden_states.shape[:-1] + (2, 4)).sum(-1) | |
# 3) compute gate for position bias from projected hidden states | |
gate_a, gate_b = torch.sigmoid(relative_position_proj).chunk(2, dim=-1) | |
gate_output = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0 | |
# 4) apply gate to position bias to compute gated position_bias | |
gated_position_bias = gate_output.view(bsz * self.num_heads, -1, 1) * position_bias | |
gated_position_bias = gated_position_bias.view((-1, tgt_len, tgt_len)) | |
attn_output, attn_weights = self.torch_multi_head_self_attention( | |
hidden_states, attention_mask, gated_position_bias, output_attentions | |
) | |
return attn_output, attn_weights, position_bias | |
def torch_multi_head_self_attention( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Union[torch.LongTensor, torch.BoolTensor], | |
gated_position_bias: torch.FloatTensor, | |
output_attentions: bool, | |
) -> (torch.FloatTensor, torch.FloatTensor): | |
"""simple wrapper around torch's multi_head_attention_forward function""" | |
# self-attention assumes q = k = v | |
query = key = value = hidden_states.transpose(0, 1) | |
key_padding_mask = attention_mask.ne(1) if attention_mask is not None else None | |
# disable bias and add_zero_attn | |
bias_k = bias_v = None | |
add_zero_attn = False | |
# PyTorch 1.3.0 has F.multi_head_attention_forward defined | |
# so no problem with backwards compatibility | |
attn_output, attn_weights = F.multi_head_attention_forward( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
torch.empty([0]), | |
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), | |
bias_k, | |
bias_v, | |
add_zero_attn, | |
self.dropout, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
self.training, | |
key_padding_mask, | |
output_attentions, | |
gated_position_bias, | |
use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
) | |
# [Seq_Len, Batch Size, ...] -> [Batch Size, Seq_Len, ...] | |
attn_output = attn_output.transpose(0, 1) | |
if attn_weights is not None: | |
# IMPORTANT: Attention weights are averaged weights | |
# here which should not be the case. This is an open issue | |
# on PyTorch: https://github.com/pytorch/pytorch/issues/32590 | |
attn_weights = attn_weights[:, None].broadcast_to( | |
attn_weights.shape[:1] + (self.num_heads,) + attn_weights.shape[1:] | |
) | |
return attn_output, attn_weights | |
def compute_bias(self, query_length: int, key_length: int) -> torch.FloatTensor: | |
context_position = torch.arange(query_length, dtype=torch.long)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long)[None, :] | |
relative_position = memory_position - context_position | |
relative_position_bucket = self._relative_positions_bucket(relative_position) | |
relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device) | |
values = self.rel_attn_embed(relative_position_bucket) | |
values = values.permute([2, 0, 1]) | |
return values | |
def _relative_positions_bucket(self, relative_positions: torch.FloatTensor) -> torch.FloatTensor: | |
num_buckets = self.num_buckets // 2 | |
relative_buckets = (relative_positions > 0).to(torch.long) * num_buckets | |
relative_positions = torch.abs(relative_positions) | |
max_exact = num_buckets // 2 | |
is_small = relative_positions < max_exact | |
relative_positions_if_large = torch.log(relative_positions.float() / max_exact) | |
relative_positions_if_large = relative_positions_if_large / math.log(self.max_distance / max_exact) | |
relative_positions_if_large = relative_positions_if_large * (num_buckets - max_exact) | |
relative_position_if_large = (max_exact + relative_positions_if_large).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_positions, relative_position_if_large) | |
return relative_buckets | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->WavLM | |
class WavLMFeedForward(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.intermediate_dropout = nn.Dropout(config.activation_dropout) | |
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.output_dropout = nn.Dropout(config.hidden_dropout) | |
def forward(self, hidden_states): | |
hidden_states = self.intermediate_dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
hidden_states = self.intermediate_dropout(hidden_states) | |
hidden_states = self.output_dense(hidden_states) | |
hidden_states = self.output_dropout(hidden_states) | |
return hidden_states | |
class WavLMEncoderLayer(nn.Module): | |
def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True): | |
super().__init__() | |
self.attention = WavLMAttention( | |
embed_dim=config.hidden_size, | |
num_heads=config.num_attention_heads, | |
dropout=config.attention_dropout, | |
num_buckets=config.num_buckets, | |
max_distance=config.max_bucket_distance, | |
has_relative_position_bias=has_relative_position_bias, | |
) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.feed_forward = WavLMFeedForward(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0): | |
attn_residual = hidden_states | |
hidden_states, attn_weights, position_bias = self.attention( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
output_attentions=output_attentions, | |
index=index, | |
) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = attn_residual + hidden_states | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = hidden_states + self.feed_forward(hidden_states) | |
hidden_states = self.final_layer_norm(hidden_states) | |
outputs = (hidden_states, position_bias) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class WavLMEncoderLayerStableLayerNorm(nn.Module): | |
def __init__(self, config: WavLMConfig, has_relative_position_bias: bool = True): | |
super().__init__() | |
self.attention = WavLMAttention( | |
embed_dim=config.hidden_size, | |
num_heads=config.num_attention_heads, | |
dropout=config.attention_dropout, | |
num_buckets=config.num_buckets, | |
max_distance=config.max_bucket_distance, | |
has_relative_position_bias=has_relative_position_bias, | |
) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.feed_forward = WavLMFeedForward(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False): | |
attn_residual = hidden_states | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states, attn_weights, position_bias = self.attention( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
output_attentions=output_attentions, | |
) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = attn_residual + hidden_states | |
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) | |
outputs = (hidden_states, position_bias) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class WavLMEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.pos_conv_embed = WavLMPositionalConvEmbedding(config) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layers = nn.ModuleList( | |
[WavLMEncoderLayer(config, has_relative_position_bias=(i == 0)) for i in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if attention_mask is not None: | |
# make sure padded tokens output 0 | |
hidden_states[~attention_mask] = 0.0 | |
position_embeddings = self.pos_conv_embed(hidden_states) | |
hidden_states = hidden_states + position_embeddings | |
hidden_states = self.layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
position_bias = None | |
for i, layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = torch.rand([]) | |
skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop) | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_bias, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
output_attentions=output_attentions, | |
index=i, | |
) | |
hidden_states, position_bias = layer_outputs[:2] | |
if skip_the_layer: | |
layer_outputs = (None, None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class WavLMEncoderStableLayerNorm(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.pos_conv_embed = WavLMPositionalConvEmbedding(config) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout) | |
self.layers = nn.ModuleList( | |
[ | |
WavLMEncoderLayerStableLayerNorm(config, has_relative_position_bias=(i == 0)) | |
for i in range(config.num_hidden_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if attention_mask is not None: | |
# make sure padded tokens are not attended to | |
hidden_states[~attention_mask] = 0 | |
position_embeddings = self.pos_conv_embed(hidden_states) | |
hidden_states = hidden_states + position_embeddings | |
hidden_states = self.dropout(hidden_states) | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
position_bias = None | |
for i, layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = torch.rand([]) | |
skip_the_layer = self.training and i > 0 and (dropout_probability < self.config.layerdrop) | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_bias, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
position_bias=position_bias, | |
) | |
hidden_states, position_bias = layer_outputs[:2] | |
if skip_the_layer: | |
layer_outputs = (None, None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[2],) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions | |
) | |
class WavLMGumbelVectorQuantizer(nn.Module): | |
""" | |
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH | |
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.num_groups = config.num_codevector_groups | |
self.num_vars = config.num_codevectors_per_group | |
if config.codevector_dim % self.num_groups != 0: | |
raise ValueError( | |
f"`config.codevector_dim {config.codevector_dim} must be divisible" | |
f" by `config.num_codevector_groups` {self.num_groups} " | |
"for concatenation." | |
) | |
# storage for codebook variables (codewords) | |
self.codevectors = nn.Parameter( | |
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) | |
) | |
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) | |
# can be decayed for training | |
self.temperature = 2 | |
def _compute_perplexity(probs): | |
marginal_probs = probs.mean(dim=0) | |
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() | |
return perplexity | |
def forward(self, hidden_states): | |
batch_size, sequence_length, hidden_size = hidden_states.shape | |
# project to codevector dim | |
hidden_states = self.weight_proj(hidden_states) | |
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) | |
if self.training: | |
# sample code vector probs via gumbel in differentiateable way | |
codevector_probs = nn.functional.gumbel_softmax(hidden_states.float(), tau=self.temperature, hard=True) | |
codevector_probs = codevector_probs.type_as(hidden_states) | |
# compute perplexity | |
codevector_soft_dist = torch.softmax( | |
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 | |
) | |
perplexity = self._compute_perplexity(codevector_soft_dist) | |
else: | |
# take argmax in non-differentiable way | |
# comptute hard codevector distribution (one hot) | |
codevector_idx = hidden_states.argmax(dim=-1) | |
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( | |
-1, codevector_idx.view(-1, 1), 1.0 | |
) | |
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) | |
perplexity = self._compute_perplexity(codevector_probs) | |
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) | |
# use probs to retrieve codevectors | |
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors | |
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) | |
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) | |
return codevectors, perplexity | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->WavLM | |
class WavLMAdapter(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
# feature dim might need to be down-projected | |
if config.output_hidden_size != config.hidden_size: | |
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) | |
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) | |
else: | |
self.proj = self.proj_layer_norm = None | |
self.layers = nn.ModuleList(WavLMAdapterLayer(config) for _ in range(config.num_adapter_layers)) | |
self.layerdrop = config.layerdrop | |
def forward(self, hidden_states): | |
# down project hidden_states if necessary | |
if self.proj is not None and self.proj_layer_norm is not None: | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.proj_layer_norm(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
for layer in self.layers: | |
layerdrop_prob = np.random.random() | |
if not self.training or (layerdrop_prob > self.layerdrop): | |
hidden_states = layer(hidden_states) | |
hidden_states = hidden_states.transpose(1, 2) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->WavLM | |
class WavLMAdapterLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
config.output_hidden_size, | |
2 * config.output_hidden_size, | |
config.adapter_kernel_size, | |
stride=config.adapter_stride, | |
padding=1, | |
) | |
def forward(self, hidden_states): | |
hidden_states = self.conv(hidden_states) | |
hidden_states = nn.functional.glu(hidden_states, dim=1) | |
return hidden_states | |
class WavLMPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = WavLMConfig | |
base_model_prefix = "wavlm" | |
main_input_name = "input_values" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
# gumbel softmax requires special init | |
if isinstance(module, WavLMGumbelVectorQuantizer): | |
module.weight_proj.weight.data.normal_(mean=0.0, std=1) | |
module.weight_proj.bias.data.zero_() | |
nn.init.uniform_(module.codevectors) | |
elif isinstance(module, WavLMPositionalConvEmbedding): | |
nn.init.normal_( | |
module.conv.weight, | |
mean=0, | |
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), | |
) | |
nn.init.constant_(module.conv.bias, 0) | |
elif isinstance(module, WavLMFeatureProjection): | |
k = math.sqrt(1 / module.projection.in_features) | |
nn.init.uniform_(module.projection.weight, a=-k, b=k) | |
nn.init.uniform_(module.projection.bias, a=-k, b=k) | |
elif isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Conv1d): | |
nn.init.kaiming_normal_(module.weight) | |
if module.bias is not None: | |
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) | |
nn.init.uniform_(module.bias, a=-k, b=k) | |
def _get_feat_extract_output_lengths( | |
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None | |
): | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter | |
def _conv_out_length(input_length, kernel_size, stride): | |
# 1D convolutional layer output length formula taken | |
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html | |
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 | |
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): | |
input_lengths = _conv_out_length(input_lengths, kernel_size, stride) | |
if add_adapter: | |
for _ in range(self.config.num_adapter_layers): | |
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) | |
return input_lengths | |
def _get_feature_vector_attention_mask( | |
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None | |
): | |
# Effectively attention_mask.sum(-1), but not inplace to be able to run | |
# on inference mode. | |
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] | |
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) | |
output_lengths = output_lengths.to(torch.long) | |
batch_size = attention_mask.shape[0] | |
attention_mask = torch.zeros( | |
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device | |
) | |
# these two operations makes sure that all values before the output lengths idxs are attended to | |
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 | |
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
return attention_mask | |
WAVLM_START_DOCSTRING = r""" | |
WavLM was proposed in [WavLM: Unified Speech Representation Learning with Labeled and Unlabeled | |
Data](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo | |
Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, | |
Jian Wu, Michael Zeng, Xiangzhan Yu, Furu Wei. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving etc.). | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`WavLMConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
WAVLM_INPUTS_DOCSTRING = r""" | |
Args: | |
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): | |
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file | |
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install | |
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and | |
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, | |
1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
<Tip warning={true}> | |
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == | |
True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should | |
**not** be passed to avoid degraded performance when doing batched inference. For such models | |
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these | |
models also yield slightly different results depending on whether `input_values` is padded or not. | |
</Tip> | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM, WavLMBaseModelOutput->Wav2Vec2BaseModelOutput | |
class WavLMModel(WavLMPreTrainedModel): | |
def __init__(self, config: WavLMConfig): | |
super().__init__(config) | |
self.config = config | |
self.feature_extractor = WavLMFeatureEncoder(config) | |
self.feature_projection = WavLMFeatureProjection(config) | |
# model only needs masking vector if mask prob is > 0.0 | |
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: | |
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) | |
if config.do_stable_layer_norm: | |
self.encoder = WavLMEncoderStableLayerNorm(config) | |
else: | |
self.encoder = WavLMEncoder(config) | |
self.adapter = WavLMAdapter(config) if config.add_adapter else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameters will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.feature_extractor._freeze_parameters() | |
def _mask_hidden_states( | |
self, | |
hidden_states: torch.FloatTensor, | |
mask_time_indices: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
): | |
""" | |
Masks extracted features along time axis and/or along feature axis according to | |
[SpecAugment](https://arxiv.org/abs/1904.08779). | |
""" | |
# `config.apply_spec_augment` can set masking to False | |
if not getattr(self.config, "apply_spec_augment", True): | |
return hidden_states | |
# generate indices & apply SpecAugment along time axis | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
if mask_time_indices is not None: | |
# apply SpecAugment along time axis with given mask_time_indices | |
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
elif self.config.mask_time_prob > 0 and self.training: | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
mask_prob=self.config.mask_time_prob, | |
mask_length=self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=self.config.mask_time_min_masks, | |
) | |
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) | |
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
if self.config.mask_feature_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along feature axis | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
mask_prob=self.config.mask_feature_prob, | |
mask_length=self.config.mask_feature_length, | |
min_masks=self.config.mask_feature_min_masks, | |
) | |
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) | |
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) | |
hidden_states[mask_feature_indices] = 0 | |
return hidden_states | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
mask_time_indices: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Wav2Vec2BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
extract_features = self.feature_extractor(input_values) | |
extract_features = extract_features.transpose(1, 2) | |
if attention_mask is not None: | |
# compute reduced attention_mask corresponding to feature vectors | |
attention_mask = self._get_feature_vector_attention_mask( | |
extract_features.shape[1], attention_mask, add_adapter=False | |
) | |
hidden_states, extract_features = self.feature_projection(extract_features) | |
hidden_states = self._mask_hidden_states( | |
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask | |
) | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
if self.adapter is not None: | |
hidden_states = self.adapter(hidden_states) | |
if not return_dict: | |
return (hidden_states, extract_features) + encoder_outputs[1:] | |
return Wav2Vec2BaseModelOutput( | |
last_hidden_state=hidden_states, | |
extract_features=extract_features, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM | |
class WavLMForCTC(WavLMPreTrainedModel): | |
def __init__(self, config, target_lang: Optional[str] = None): | |
super().__init__(config) | |
self.wavlm = WavLMModel(config) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.target_lang = target_lang | |
if config.vocab_size is None: | |
raise ValueError( | |
f"You are trying to instantiate {self.__class__} with a configuration that " | |
"does not define the vocabulary size of the language model head. Please " | |
"instantiate the model as follows: `WavLMForCTC.from_pretrained(..., vocab_size=vocab_size)`. " | |
"or define `vocab_size` of your model's configuration." | |
) | |
output_hidden_size = ( | |
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size | |
) | |
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def tie_weights(self): | |
""" | |
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when | |
passing `target_lang=...` to `from_pretrained(...)`. | |
This method is **not** supposed to be called by the user and is prone to be changed in the future. | |
""" | |
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to | |
# correctly load adapter layers for WavLM so that we do not have to introduce a new API to | |
# [`PreTrainedModel`]. While slightly hacky, WavLM never has to tie input and output embeddings, so that it is | |
# ok to repurpose this function here. | |
target_lang = self.target_lang | |
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: | |
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") | |
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: | |
logger.info("By default `target_lang` is set to 'eng'.") | |
elif target_lang is not None: | |
self.load_adapter(target_lang, force_load=True) | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wavlm.feature_extractor._freeze_parameters() | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wavlm.parameters(): | |
param.requires_grad = False | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, CausalLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): | |
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to | |
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. | |
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., | |
config.vocab_size - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None and labels.max() >= self.config.vocab_size: | |
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") | |
outputs = self.wavlm( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# retrieve loss input_lengths from attention_mask | |
attention_mask = ( | |
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) | |
) | |
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) | |
# assuming that padded tokens are filled with -100 | |
# when not being attended to | |
labels_mask = labels >= 0 | |
target_lengths = labels_mask.sum(-1) | |
flattened_targets = labels.masked_select(labels_mask) | |
# ctc_loss doesn't support fp16 | |
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) | |
with torch.backends.cudnn.flags(enabled=False): | |
loss = nn.functional.ctc_loss( | |
log_probs, | |
flattened_targets, | |
input_lengths, | |
target_lengths, | |
blank=self.config.pad_token_id, | |
reduction=self.config.ctc_loss_reduction, | |
zero_infinity=self.config.ctc_zero_infinity, | |
) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutput( | |
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions | |
) | |
class WavLMForSequenceClassification(WavLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
if hasattr(config, "add_adapter") and config.add_adapter: | |
raise ValueError( | |
"Sequence classification does not support the use of WavLM adapters (config.add_adapter=True)" | |
) | |
self.wavlm = WavLMModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameters will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wavlm | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wavlm.feature_extractor._freeze_parameters() | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->wavlm | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wavlm.parameters(): | |
param.requires_grad = False | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->WavLM, wav2vec2->wavlm | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.wavlm( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
hidden_states = self.projector(hidden_states) | |
if attention_mask is None: | |
pooled_output = hidden_states.mean(dim=1) | |
else: | |
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) | |
hidden_states[~padding_mask] = 0.0 | |
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM | |
class WavLMForAudioFrameClassification(WavLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
if hasattr(config, "add_adapter") and config.add_adapter: | |
raise ValueError( | |
"Audio frame classification does not support the use of WavLM adapters (config.add_adapter=True)" | |
) | |
self.wavlm = WavLMModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.num_labels = config.num_labels | |
self.init_weights() | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wavlm.feature_extractor._freeze_parameters() | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wavlm.parameters(): | |
param.requires_grad = False | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.wavlm( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) | |
if not return_dict: | |
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss | |
class AMSoftmaxLoss(nn.Module): | |
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): | |
super(AMSoftmaxLoss, self).__init__() | |
self.scale = scale | |
self.margin = margin | |
self.num_labels = num_labels | |
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) | |
self.loss = nn.CrossEntropyLoss() | |
def forward(self, hidden_states, labels): | |
labels = labels.flatten() | |
weight = nn.functional.normalize(self.weight, dim=0) | |
hidden_states = nn.functional.normalize(hidden_states, dim=1) | |
cos_theta = torch.mm(hidden_states, weight) | |
psi = cos_theta - self.margin | |
onehot = nn.functional.one_hot(labels, self.num_labels) | |
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) | |
loss = self.loss(logits, labels) | |
return loss | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer | |
class TDNNLayer(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] | |
self.out_conv_dim = config.tdnn_dim[layer_id] | |
self.kernel_size = config.tdnn_kernel[layer_id] | |
self.dilation = config.tdnn_dilation[layer_id] | |
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) | |
self.activation = nn.ReLU() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if is_peft_available(): | |
from peft.tuners.lora import LoraLayer | |
if isinstance(self.kernel, LoraLayer): | |
warnings.warn( | |
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " | |
"You should exclude TDNNLayer from LoRA's target modules.", | |
) | |
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up | |
hidden_states = hidden_states.transpose(1, 2) | |
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) | |
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) | |
hidden_states = hidden_states.transpose(1, 2) | |
hidden_states = self.activation(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->WavLM, wav2vec2->wavlm, WAV_2_VEC_2->WAVLM | |
class WavLMForXVector(WavLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.wavlm = WavLMModel(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) | |
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] | |
self.tdnn = nn.ModuleList(tdnn_layers) | |
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) | |
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) | |
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) | |
self.init_weights() | |
def freeze_feature_extractor(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
warnings.warn( | |
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " | |
"Please use the equivalent `freeze_feature_encoder` method instead.", | |
FutureWarning, | |
) | |
self.freeze_feature_encoder() | |
def freeze_feature_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the feature encoder so that its parameter will | |
not be updated during training. | |
""" | |
self.wavlm.feature_extractor._freeze_parameters() | |
def freeze_base_model(self): | |
""" | |
Calling this function will disable the gradient computation for the base model so that its parameters will not | |
be updated during training. Only the classification head will be updated. | |
""" | |
for param in self.wavlm.parameters(): | |
param.requires_grad = False | |
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): | |
""" | |
Computes the output length of the TDNN layers | |
""" | |
def _conv_out_length(input_length, kernel_size, stride): | |
# 1D convolutional layer output length formula taken | |
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html | |
return (input_length - kernel_size) // stride + 1 | |
for kernel_size in self.config.tdnn_kernel: | |
input_lengths = _conv_out_length(input_lengths, kernel_size, 1) | |
return input_lengths | |
def forward( | |
self, | |
input_values: Optional[torch.Tensor], | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
) -> Union[Tuple, XVectorOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states | |
outputs = self.wavlm( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = outputs[0] | |
hidden_states = self.projector(hidden_states) | |
for tdnn_layer in self.tdnn: | |
hidden_states = tdnn_layer(hidden_states) | |
# Statistic Pooling | |
if attention_mask is None: | |
mean_features = hidden_states.mean(dim=1) | |
std_features = hidden_states.std(dim=1) | |
else: | |
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) | |
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) | |
mean_features = [] | |
std_features = [] | |
for i, length in enumerate(tdnn_output_lengths): | |
mean_features.append(hidden_states[i, :length].mean(dim=0)) | |
std_features.append(hidden_states[i, :length].std(dim=0)) | |
mean_features = torch.stack(mean_features) | |
std_features = torch.stack(std_features) | |
statistic_pooling = torch.cat([mean_features, std_features], dim=-1) | |
output_embeddings = self.feature_extractor(statistic_pooling) | |
logits = self.classifier(output_embeddings) | |
loss = None | |
if labels is not None: | |
loss = self.objective(logits, labels) | |
if not return_dict: | |
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] | |
return ((loss,) + output) if loss is not None else output | |
return XVectorOutput( | |
loss=loss, | |
logits=logits, | |
embeddings=output_embeddings, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |