Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/yolos
/modeling_yolos.py
# coding=utf-8 | |
# Copyright 2022 School of EIC, Huazhong University of Science & Technology and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch YOLOS model.""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Set, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import Tensor, nn | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_accelerate_available, | |
is_scipy_available, | |
is_vision_available, | |
logging, | |
replace_return_docstrings, | |
requires_backends, | |
) | |
from .configuration_yolos import YolosConfig | |
if is_scipy_available(): | |
from scipy.optimize import linear_sum_assignment | |
if is_vision_available(): | |
from transformers.image_transforms import center_to_corners_format | |
if is_accelerate_available(): | |
from accelerate import PartialState | |
from accelerate.utils import reduce | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "YolosConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "hustvl/yolos-small" | |
_EXPECTED_OUTPUT_SHAPE = [1, 3401, 384] | |
class YolosObjectDetectionOutput(ModelOutput): | |
""" | |
Output type of [`YolosForObjectDetection`]. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): | |
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a | |
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized | |
scale-invariant IoU loss. | |
loss_dict (`Dict`, *optional*): | |
A dictionary containing the individual losses. Useful for logging. | |
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): | |
Classification logits (including no-object) for all queries. | |
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): | |
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These | |
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding | |
possible padding). You can use [`~YolosImageProcessor.post_process`] to retrieve the unnormalized bounding | |
boxes. | |
auxiliary_outputs (`list[Dict]`, *optional*): | |
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) | |
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and | |
`pred_boxes`) for each decoder layer. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the decoder of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
loss_dict: Optional[Dict] = None | |
logits: torch.FloatTensor = None | |
pred_boxes: torch.FloatTensor = None | |
auxiliary_outputs: Optional[List[Dict]] = None | |
last_hidden_state: Optional[torch.FloatTensor] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class YolosEmbeddings(nn.Module): | |
""" | |
Construct the CLS token, detection tokens, position and patch embeddings. | |
""" | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.detection_tokens = nn.Parameter(torch.zeros(1, config.num_detection_tokens, config.hidden_size)) | |
self.patch_embeddings = YolosPatchEmbeddings(config) | |
num_patches = self.patch_embeddings.num_patches | |
self.position_embeddings = nn.Parameter( | |
torch.zeros(1, num_patches + config.num_detection_tokens + 1, config.hidden_size) | |
) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.interpolation = InterpolateInitialPositionEmbeddings(config) | |
self.config = config | |
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
embeddings = self.patch_embeddings(pixel_values) | |
batch_size, seq_len, _ = embeddings.size() | |
# add the [CLS] and detection tokens to the embedded patch tokens | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
detection_tokens = self.detection_tokens.expand(batch_size, -1, -1) | |
embeddings = torch.cat((cls_tokens, embeddings, detection_tokens), dim=1) | |
# add positional encoding to each token | |
# this might require interpolation of the existing position embeddings | |
position_embeddings = self.interpolation(self.position_embeddings, (height, width)) | |
embeddings = embeddings + position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class InterpolateInitialPositionEmbeddings(nn.Module): | |
def __init__(self, config) -> None: | |
super().__init__() | |
self.config = config | |
def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: | |
cls_pos_embed = pos_embed[:, 0, :] | |
cls_pos_embed = cls_pos_embed[:, None] | |
det_pos_embed = pos_embed[:, -self.config.num_detection_tokens :, :] | |
patch_pos_embed = pos_embed[:, 1 : -self.config.num_detection_tokens, :] | |
patch_pos_embed = patch_pos_embed.transpose(1, 2) | |
batch_size, hidden_size, seq_len = patch_pos_embed.shape | |
patch_height, patch_width = ( | |
self.config.image_size[0] // self.config.patch_size, | |
self.config.image_size[1] // self.config.patch_size, | |
) | |
patch_pos_embed = patch_pos_embed.view(batch_size, hidden_size, patch_height, patch_width) | |
height, width = img_size | |
new_patch_heigth, new_patch_width = height // self.config.patch_size, width // self.config.patch_size | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, size=(new_patch_heigth, new_patch_width), mode="bicubic", align_corners=False | |
) | |
patch_pos_embed = patch_pos_embed.flatten(2).transpose(1, 2) | |
scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=1) | |
return scale_pos_embed | |
class InterpolateMidPositionEmbeddings(nn.Module): | |
def __init__(self, config) -> None: | |
super().__init__() | |
self.config = config | |
def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: | |
cls_pos_embed = pos_embed[:, :, 0, :] | |
cls_pos_embed = cls_pos_embed[:, None] | |
det_pos_embed = pos_embed[:, :, -self.config.num_detection_tokens :, :] | |
patch_pos_embed = pos_embed[:, :, 1 : -self.config.num_detection_tokens, :] | |
patch_pos_embed = patch_pos_embed.transpose(2, 3) | |
depth, batch_size, hidden_size, seq_len = patch_pos_embed.shape | |
patch_height, patch_width = ( | |
self.config.image_size[0] // self.config.patch_size, | |
self.config.image_size[1] // self.config.patch_size, | |
) | |
patch_pos_embed = patch_pos_embed.view(depth * batch_size, hidden_size, patch_height, patch_width) | |
height, width = img_size | |
new_patch_height, new_patch_width = height // self.config.patch_size, width // self.config.patch_size | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, size=(new_patch_height, new_patch_width), mode="bicubic", align_corners=False | |
) | |
patch_pos_embed = ( | |
patch_pos_embed.flatten(2) | |
.transpose(1, 2) | |
.contiguous() | |
.view(depth, batch_size, new_patch_height * new_patch_width, hidden_size) | |
) | |
scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=2) | |
return scale_pos_embed | |
class YolosPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.hidden_size | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
return embeddings | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Yolos | |
class YolosSelfAttention(nn.Module): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTSdpaSelfAttention with ViT->Yolos | |
class YolosSdpaSelfAttention(YolosSelfAttention): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__(config) | |
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob | |
def forward( | |
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
context_layer = torch.nn.functional.scaled_dot_product_attention( | |
query_layer, | |
key_layer, | |
value_layer, | |
head_mask, | |
self.attention_probs_dropout_prob if self.training else 0.0, | |
is_causal=False, | |
scale=None, | |
) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
return context_layer, None | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Yolos | |
class YolosSelfOutput(nn.Module): | |
""" | |
The residual connection is defined in YolosLayer instead of here (as is the case with other models), due to the | |
layernorm applied before each block. | |
""" | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Yolos | |
class YolosAttention(nn.Module): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.attention = YolosSelfAttention(config) | |
self.output = YolosSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads: Set[int]) -> None: | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_outputs = self.attention(hidden_states, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->Yolos | |
class YolosSdpaAttention(YolosAttention): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__(config) | |
self.attention = YolosSdpaSelfAttention(config) | |
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Yolos | |
class YolosIntermediate(nn.Module): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Yolos | |
class YolosOutput(nn.Module): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states + input_tensor | |
return hidden_states | |
YOLOS_ATTENTION_CLASSES = {"eager": YolosAttention, "sdpa": YolosSdpaAttention} | |
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->Yolos,VIT->YOLOS | |
class YolosLayer(nn.Module): | |
"""This corresponds to the Block class in the timm implementation.""" | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = YOLOS_ATTENTION_CLASSES[config._attn_implementation](config) | |
self.intermediate = YolosIntermediate(config) | |
self.output = YolosOutput(config) | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_attention_outputs = self.attention( | |
self.layernorm_before(hidden_states), # in Yolos, layernorm is applied before self-attention | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# first residual connection | |
hidden_states = attention_output + hidden_states | |
# in Yolos, layernorm is also applied after self-attention | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
# second residual connection is done here | |
layer_output = self.output(layer_output, hidden_states) | |
outputs = (layer_output,) + outputs | |
return outputs | |
class YolosEncoder(nn.Module): | |
def __init__(self, config: YolosConfig) -> None: | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([YolosLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
seq_length = ( | |
1 + (config.image_size[0] * config.image_size[1] // config.patch_size**2) + config.num_detection_tokens | |
) | |
self.mid_position_embeddings = ( | |
nn.Parameter( | |
torch.zeros( | |
config.num_hidden_layers - 1, | |
1, | |
seq_length, | |
config.hidden_size, | |
) | |
) | |
if config.use_mid_position_embeddings | |
else None | |
) | |
self.interpolation = InterpolateMidPositionEmbeddings(config) if config.use_mid_position_embeddings else None | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
height, | |
width, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if self.config.use_mid_position_embeddings: | |
interpolated_mid_position_embeddings = self.interpolation(self.mid_position_embeddings, (height, width)) | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
layer_head_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if self.config.use_mid_position_embeddings: | |
if i < (self.config.num_hidden_layers - 1): | |
hidden_states = hidden_states + interpolated_mid_position_embeddings[i] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class YolosPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = YolosConfig | |
base_model_prefix = "vit" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = [] | |
_supports_sdpa = True | |
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
YOLOS_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`YolosConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
YOLOS_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`YolosImageProcessor.__call__`] for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class YolosModel(YolosPreTrainedModel): | |
def __init__(self, config: YolosConfig, add_pooling_layer: bool = True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = YolosEmbeddings(config) | |
self.encoder = YolosEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = YolosPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> YolosPatchEmbeddings: | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. | |
Args: | |
heads_to_prune (`dict`): | |
See base class `PreTrainedModel`. The input dictionary must have the following format: {layer_num: | |
list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
height=pixel_values.shape[-2], | |
width=pixel_values.shape[-1], | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) | |
return head_outputs + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class YolosPooler(nn.Module): | |
def __init__(self, config: YolosConfig): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class YolosForObjectDetection(YolosPreTrainedModel): | |
def __init__(self, config: YolosConfig): | |
super().__init__(config) | |
# YOLOS (ViT) encoder model | |
self.vit = YolosModel(config, add_pooling_layer=False) | |
# Object detection heads | |
# We add one for the "no object" class | |
self.class_labels_classifier = YolosMLPPredictionHead( | |
input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=config.num_labels + 1, num_layers=3 | |
) | |
self.bbox_predictor = YolosMLPPredictionHead( | |
input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=4, num_layers=3 | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py | |
def _set_aux_loss(self, outputs_class, outputs_coord): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
labels: Optional[List[Dict]] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, YolosObjectDetectionOutput]: | |
r""" | |
labels (`List[Dict]` of len `(batch_size,)`, *optional*): | |
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the | |
following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the | |
batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding | |
boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, | |
4)`. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny") | |
>>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny") | |
>>> inputs = image_processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) | |
>>> target_sizes = torch.tensor([image.size[::-1]]) | |
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ | |
... 0 | |
... ] | |
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
... box = [round(i, 2) for i in box.tolist()] | |
... print( | |
... f"Detected {model.config.id2label[label.item()]} with confidence " | |
... f"{round(score.item(), 3)} at location {box}" | |
... ) | |
Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3] | |
Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36] | |
Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09] | |
Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67] | |
Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# First, sent images through YOLOS base model to obtain hidden states | |
outputs = self.vit( | |
pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
# Take the final hidden states of the detection tokens | |
sequence_output = sequence_output[:, -self.config.num_detection_tokens :, :] | |
# Class logits + predicted bounding boxes | |
logits = self.class_labels_classifier(sequence_output) | |
pred_boxes = self.bbox_predictor(sequence_output).sigmoid() | |
loss, loss_dict, auxiliary_outputs = None, None, None | |
if labels is not None: | |
# First: create the matcher | |
matcher = YolosHungarianMatcher( | |
class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost | |
) | |
# Second: create the criterion | |
losses = ["labels", "boxes", "cardinality"] | |
criterion = YolosLoss( | |
matcher=matcher, | |
num_classes=self.config.num_labels, | |
eos_coef=self.config.eos_coefficient, | |
losses=losses, | |
) | |
criterion.to(self.device) | |
# Third: compute the losses, based on outputs and labels | |
outputs_loss = {} | |
outputs_loss["logits"] = logits | |
outputs_loss["pred_boxes"] = pred_boxes | |
if self.config.auxiliary_loss: | |
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] | |
outputs_class = self.class_labels_classifier(intermediate) | |
outputs_coord = self.bbox_predictor(intermediate).sigmoid() | |
auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) | |
outputs_loss["auxiliary_outputs"] = auxiliary_outputs | |
loss_dict = criterion(outputs_loss, labels) | |
# Fourth: compute total loss, as a weighted sum of the various losses | |
weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} | |
weight_dict["loss_giou"] = self.config.giou_loss_coefficient | |
if self.config.auxiliary_loss: | |
aux_weight_dict = {} | |
for i in range(self.config.decoder_layers - 1): | |
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) | |
if not return_dict: | |
if auxiliary_outputs is not None: | |
output = (logits, pred_boxes) + auxiliary_outputs + outputs | |
else: | |
output = (logits, pred_boxes) + outputs | |
return ((loss, loss_dict) + output) if loss is not None else output | |
return YolosObjectDetectionOutput( | |
loss=loss, | |
loss_dict=loss_dict, | |
logits=logits, | |
pred_boxes=pred_boxes, | |
auxiliary_outputs=auxiliary_outputs, | |
last_hidden_state=outputs.last_hidden_state, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.detr.modeling_detr.dice_loss | |
def dice_loss(inputs, targets, num_boxes): | |
""" | |
Compute the DICE loss, similar to generalized IOU for masks | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs (0 for the negative class and 1 for the positive | |
class). | |
""" | |
inputs = inputs.sigmoid() | |
inputs = inputs.flatten(1) | |
numerator = 2 * (inputs * targets).sum(1) | |
denominator = inputs.sum(-1) + targets.sum(-1) | |
loss = 1 - (numerator + 1) / (denominator + 1) | |
return loss.sum() / num_boxes | |
# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss | |
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): | |
""" | |
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. | |
Args: | |
inputs (`torch.FloatTensor` of arbitrary shape): | |
The predictions for each example. | |
targets (`torch.FloatTensor` with the same shape as `inputs`) | |
A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class | |
and 1 for the positive class). | |
alpha (`float`, *optional*, defaults to `0.25`): | |
Optional weighting factor in the range (0,1) to balance positive vs. negative examples. | |
gamma (`int`, *optional*, defaults to `2`): | |
Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. | |
Returns: | |
Loss tensor | |
""" | |
prob = inputs.sigmoid() | |
ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") | |
# add modulating factor | |
p_t = prob * targets + (1 - prob) * (1 - targets) | |
loss = ce_loss * ((1 - p_t) ** gamma) | |
if alpha >= 0: | |
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) | |
loss = alpha_t * loss | |
return loss.mean(1).sum() / num_boxes | |
# Copied from transformers.models.detr.modeling_detr.DetrLoss with Detr->Yolos | |
class YolosLoss(nn.Module): | |
""" | |
This class computes the losses for YolosForObjectDetection/YolosForSegmentation. The process happens in two steps: 1) | |
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair | |
of matched ground-truth / prediction (supervise class and box). | |
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes` | |
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is | |
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to | |
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 | |
(`max_obj_id` + 1). For more details on this, check the following discussion | |
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223" | |
Args: | |
matcher (`YolosHungarianMatcher`): | |
Module able to compute a matching between targets and proposals. | |
num_classes (`int`): | |
Number of object categories, omitting the special no-object category. | |
eos_coef (`float`): | |
Relative classification weight applied to the no-object category. | |
losses (`List[str]`): | |
List of all the losses to be applied. See `get_loss` for a list of all available losses. | |
""" | |
def __init__(self, matcher, num_classes, eos_coef, losses): | |
super().__init__() | |
self.matcher = matcher | |
self.num_classes = num_classes | |
self.eos_coef = eos_coef | |
self.losses = losses | |
empty_weight = torch.ones(self.num_classes + 1) | |
empty_weight[-1] = self.eos_coef | |
self.register_buffer("empty_weight", empty_weight) | |
# removed logging parameter, which was part of the original implementation | |
def loss_labels(self, outputs, targets, indices, num_boxes): | |
""" | |
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim | |
[nb_target_boxes] | |
""" | |
if "logits" not in outputs: | |
raise KeyError("No logits were found in the outputs") | |
source_logits = outputs["logits"] | |
idx = self._get_source_permutation_idx(indices) | |
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) | |
target_classes = torch.full( | |
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device | |
) | |
target_classes[idx] = target_classes_o | |
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) | |
losses = {"loss_ce": loss_ce} | |
return losses | |
def loss_cardinality(self, outputs, targets, indices, num_boxes): | |
""" | |
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. | |
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. | |
""" | |
logits = outputs["logits"] | |
device = logits.device | |
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) | |
# Count the number of predictions that are NOT "no-object" (which is the last class) | |
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) | |
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) | |
losses = {"cardinality_error": card_err} | |
return losses | |
def loss_boxes(self, outputs, targets, indices, num_boxes): | |
""" | |
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. | |
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes | |
are expected in format (center_x, center_y, w, h), normalized by the image size. | |
""" | |
if "pred_boxes" not in outputs: | |
raise KeyError("No predicted boxes found in outputs") | |
idx = self._get_source_permutation_idx(indices) | |
source_boxes = outputs["pred_boxes"][idx] | |
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) | |
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") | |
losses = {} | |
losses["loss_bbox"] = loss_bbox.sum() / num_boxes | |
loss_giou = 1 - torch.diag( | |
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) | |
) | |
losses["loss_giou"] = loss_giou.sum() / num_boxes | |
return losses | |
def loss_masks(self, outputs, targets, indices, num_boxes): | |
""" | |
Compute the losses related to the masks: the focal loss and the dice loss. | |
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. | |
""" | |
if "pred_masks" not in outputs: | |
raise KeyError("No predicted masks found in outputs") | |
source_idx = self._get_source_permutation_idx(indices) | |
target_idx = self._get_target_permutation_idx(indices) | |
source_masks = outputs["pred_masks"] | |
source_masks = source_masks[source_idx] | |
masks = [t["masks"] for t in targets] | |
# TODO use valid to mask invalid areas due to padding in loss | |
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() | |
target_masks = target_masks.to(source_masks) | |
target_masks = target_masks[target_idx] | |
# upsample predictions to the target size | |
source_masks = nn.functional.interpolate( | |
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False | |
) | |
source_masks = source_masks[:, 0].flatten(1) | |
target_masks = target_masks.flatten(1) | |
target_masks = target_masks.view(source_masks.shape) | |
losses = { | |
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), | |
"loss_dice": dice_loss(source_masks, target_masks, num_boxes), | |
} | |
return losses | |
def _get_source_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) | |
source_idx = torch.cat([source for (source, _) in indices]) | |
return batch_idx, source_idx | |
def _get_target_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) | |
target_idx = torch.cat([target for (_, target) in indices]) | |
return batch_idx, target_idx | |
def get_loss(self, loss, outputs, targets, indices, num_boxes): | |
loss_map = { | |
"labels": self.loss_labels, | |
"cardinality": self.loss_cardinality, | |
"boxes": self.loss_boxes, | |
"masks": self.loss_masks, | |
} | |
if loss not in loss_map: | |
raise ValueError(f"Loss {loss} not supported") | |
return loss_map[loss](outputs, targets, indices, num_boxes) | |
def forward(self, outputs, targets): | |
""" | |
This performs the loss computation. | |
Args: | |
outputs (`dict`, *optional*): | |
Dictionary of tensors, see the output specification of the model for the format. | |
targets (`List[dict]`, *optional*): | |
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the | |
losses applied, see each loss' doc. | |
""" | |
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} | |
# Retrieve the matching between the outputs of the last layer and the targets | |
indices = self.matcher(outputs_without_aux, targets) | |
# Compute the average number of target boxes across all nodes, for normalization purposes | |
num_boxes = sum(len(t["class_labels"]) for t in targets) | |
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) | |
world_size = 1 | |
if is_accelerate_available(): | |
if PartialState._shared_state != {}: | |
num_boxes = reduce(num_boxes) | |
world_size = PartialState().num_processes | |
num_boxes = torch.clamp(num_boxes / world_size, min=1).item() | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) | |
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer. | |
if "auxiliary_outputs" in outputs: | |
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): | |
indices = self.matcher(auxiliary_outputs, targets) | |
for loss in self.losses: | |
if loss == "masks": | |
# Intermediate masks losses are too costly to compute, we ignore them. | |
continue | |
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) | |
l_dict = {k + f"_{i}": v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
return losses | |
# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->Yolos | |
class YolosMLPPredictionHead(nn.Module): | |
""" | |
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, | |
height and width of a bounding box w.r.t. an image. | |
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py | |
""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
# Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->Yolos | |
class YolosHungarianMatcher(nn.Module): | |
""" | |
This class computes an assignment between the targets and the predictions of the network. | |
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more | |
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are | |
un-matched (and thus treated as non-objects). | |
Args: | |
class_cost: | |
The relative weight of the classification error in the matching cost. | |
bbox_cost: | |
The relative weight of the L1 error of the bounding box coordinates in the matching cost. | |
giou_cost: | |
The relative weight of the giou loss of the bounding box in the matching cost. | |
""" | |
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): | |
super().__init__() | |
requires_backends(self, ["scipy"]) | |
self.class_cost = class_cost | |
self.bbox_cost = bbox_cost | |
self.giou_cost = giou_cost | |
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: | |
raise ValueError("All costs of the Matcher can't be 0") | |
def forward(self, outputs, targets): | |
""" | |
Args: | |
outputs (`dict`): | |
A dictionary that contains at least these entries: | |
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits | |
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. | |
targets (`List[dict]`): | |
A list of targets (len(targets) = batch_size), where each target is a dict containing: | |
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of | |
ground-truth | |
objects in the target) containing the class labels | |
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. | |
Returns: | |
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: | |
- index_i is the indices of the selected predictions (in order) | |
- index_j is the indices of the corresponding selected targets (in order) | |
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) | |
""" | |
batch_size, num_queries = outputs["logits"].shape[:2] | |
# We flatten to compute the cost matrices in a batch | |
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] | |
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] | |
# Also concat the target labels and boxes | |
target_ids = torch.cat([v["class_labels"] for v in targets]) | |
target_bbox = torch.cat([v["boxes"] for v in targets]) | |
# Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
# but approximate it in 1 - proba[target class]. | |
# The 1 is a constant that doesn't change the matching, it can be ommitted. | |
class_cost = -out_prob[:, target_ids] | |
# Compute the L1 cost between boxes | |
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) | |
# Compute the giou cost between boxes | |
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) | |
# Final cost matrix | |
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost | |
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() | |
sizes = [len(v["boxes"]) for v in targets] | |
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] | |
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] | |
# Copied from transformers.models.detr.modeling_detr._upcast | |
def _upcast(t: Tensor) -> Tensor: | |
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type | |
if t.is_floating_point(): | |
return t if t.dtype in (torch.float32, torch.float64) else t.float() | |
else: | |
return t if t.dtype in (torch.int32, torch.int64) else t.int() | |
# Copied from transformers.models.detr.modeling_detr.box_area | |
def box_area(boxes: Tensor) -> Tensor: | |
""" | |
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. | |
Args: | |
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): | |
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 | |
< x2` and `0 <= y1 < y2`. | |
Returns: | |
`torch.FloatTensor`: a tensor containing the area for each box. | |
""" | |
boxes = _upcast(boxes) | |
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
# Copied from transformers.models.detr.modeling_detr.box_iou | |
def box_iou(boxes1, boxes2): | |
area1 = box_area(boxes1) | |
area2 = box_area(boxes2) | |
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] | |
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] | |
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] | |
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] | |
union = area1[:, None] + area2 - inter | |
iou = inter / union | |
return iou, union | |
# Copied from transformers.models.detr.modeling_detr.generalized_box_iou | |
def generalized_box_iou(boxes1, boxes2): | |
""" | |
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. | |
Returns: | |
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) | |
""" | |
# degenerate boxes gives inf / nan results | |
# so do an early check | |
if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): | |
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") | |
if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): | |
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") | |
iou, union = box_iou(boxes1, boxes2) | |
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) | |
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) | |
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] | |
area = width_height[:, :, 0] * width_height[:, :, 1] | |
return iou - (area - union) / area | |
# Copied from transformers.models.detr.modeling_detr._max_by_axis | |
def _max_by_axis(the_list): | |
# type: (List[List[int]]) -> List[int] | |
maxes = the_list[0] | |
for sublist in the_list[1:]: | |
for index, item in enumerate(sublist): | |
maxes[index] = max(maxes[index], item) | |
return maxes | |
# Copied from transformers.models.detr.modeling_detr.NestedTensor | |
class NestedTensor: | |
def __init__(self, tensors, mask: Optional[Tensor]): | |
self.tensors = tensors | |
self.mask = mask | |
def to(self, device): | |
cast_tensor = self.tensors.to(device) | |
mask = self.mask | |
if mask is not None: | |
cast_mask = mask.to(device) | |
else: | |
cast_mask = None | |
return NestedTensor(cast_tensor, cast_mask) | |
def decompose(self): | |
return self.tensors, self.mask | |
def __repr__(self): | |
return str(self.tensors) | |
# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list | |
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): | |
if tensor_list[0].ndim == 3: | |
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) | |
batch_shape = [len(tensor_list)] + max_size | |
batch_size, num_channels, height, width = batch_shape | |
dtype = tensor_list[0].dtype | |
device = tensor_list[0].device | |
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) | |
mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) | |
for img, pad_img, m in zip(tensor_list, tensor, mask): | |
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
m[: img.shape[1], : img.shape[2]] = False | |
else: | |
raise ValueError("Only 3-dimensional tensors are supported") | |
return NestedTensor(tensor, mask) | |