Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_fbgemm_fp8.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional | |
from packaging import version | |
from .base import HfQuantizer | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
from ..utils import is_accelerate_available, is_fbgemm_gpu_available, is_torch_available, logging | |
from .quantizers_utils import get_module_from_name | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class FbgemmFp8HfQuantizer(HfQuantizer): | |
""" | |
FP8 quantization using fbgemm kernels | |
""" | |
requires_parameters_quantization = True | |
requires_calibration = False | |
required_packages = ["fbgemm-gpu", "accelerate"] | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
self.quantization_config = quantization_config | |
def validate_environment(self, *args, **kwargs): | |
if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"): | |
raise ImportError( | |
"Using fbgemm fp8 quantization requires torch > 2.1.0" | |
"Please install the latest version of torch ( pip install --upgrade torch )" | |
) | |
if not is_fbgemm_gpu_available(): | |
raise ImportError( | |
"Using fbgemm fp8 quantization requires fbgemm-gpu library" | |
"Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries" | |
) | |
if not is_accelerate_available("0.32.2"): | |
raise ImportError( | |
"Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)" | |
) | |
if not torch.cuda.is_available(): | |
raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU") | |
compute_capability = torch.cuda.get_device_capability() | |
major, minor = compute_capability | |
if major < 9: | |
raise ValueError( | |
"FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)" | |
) | |
device_map = kwargs.get("device_map", None) | |
if device_map is None: | |
logger.warning_once( | |
"You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set " | |
"your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. " | |
) | |
elif device_map is not None: | |
if ( | |
not self.pre_quantized | |
and isinstance(device_map, dict) | |
and ("cpu" in device_map.values() or "disk" in device_map.values()) | |
): | |
raise ValueError( | |
"You are attempting to load an FP8 model with a device_map that contains a CPU or disk device." | |
"This is not supported when the model is quantized on the fly. " | |
"Please use a quantized checkpoint or remove the CPU or disk device from the device_map." | |
) | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
torch_dtype = torch.bfloat16 | |
logger.info( | |
"Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to " | |
"requirements of `fbgemm-gpu` to enable model loading in fp8. " | |
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" | |
" torch_dtype=torch.bfloat16 to remove this warning.", | |
torch_dtype, | |
) | |
elif torch_dtype == torch.float16: | |
raise ValueError( | |
"You cannot use FP8 with torch_dtype=torch.float16." | |
"We recommend you passing torch_dtype=torch.bfloat16" | |
) | |
return torch_dtype | |
def check_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
): | |
from ..integrations import FbgemmFp8Linear | |
module, tensor_name = get_module_from_name(model, param_name) | |
if isinstance(module, FbgemmFp8Linear): | |
if self.pre_quantized or tensor_name == "bias": | |
if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn: | |
raise ValueError("Expect quantized weights but got an unquantized weight") | |
return False | |
else: | |
if tensor_name == "weight_scale": | |
raise ValueError("Expect unquantized weights but got a quantized weight_scale") | |
return True | |
return False | |
def create_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
state_dict: Dict[str, Any], | |
unexpected_keys: Optional[List[str]] = None, | |
): | |
""" | |
Quantizes weights into weight and weight_scale | |
""" | |
new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value) | |
module, tensor_name = get_module_from_name(model, param_name) | |
module._buffers[tensor_name] = new_value.to(target_device) | |
# to have the right output shape -> (out_features, 1) | |
module._buffers["weight_scale"] = weight_scale.view(weight_scale.shape[0], 1).to(target_device) | |
if unexpected_keys is not None and param_name in unexpected_keys: | |
unexpected_keys.remove(param_name) | |
del param_name | |
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
return model | |
def _process_model_before_weight_loading( | |
self, | |
model: "PreTrainedModel", | |
device_map, | |
keep_in_fp32_modules: List[str] = [], | |
**kwargs, | |
): | |
from ..integrations import get_keys_to_not_convert, replace_with_fbgemm_fp8_linear | |
self.modules_to_not_convert = get_keys_to_not_convert(model) | |
if self.quantization_config.modules_to_not_convert is not None: | |
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) | |
model = replace_with_fbgemm_fp8_linear( | |
model, | |
modules_to_not_convert=self.modules_to_not_convert, | |
quantization_config=self.quantization_config, | |
pre_quantized=self.pre_quantized, | |
) | |
model.config.quantization_config = self.quantization_config | |
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: | |
from ..integrations import FbgemmFp8Linear | |
not_missing_keys = [] | |
for name, module in model.named_modules(): | |
if isinstance(module, FbgemmFp8Linear): | |
for missing in missing_keys: | |
if ( | |
(name in missing or name in f"{prefix}.{missing}") | |
and not missing.endswith(".weight") | |
and not missing.endswith(".bias") | |
): | |
not_missing_keys.append(missing) | |
return [k for k in missing_keys if k not in not_missing_keys] | |
def is_serializable(self): | |
return True | |
def is_trainable(self) -> bool: | |
return False | |