metadata
base_model: csebuetnlp/banglat5
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: banglat5-finetuned-headlineBT5_1000_WithIp_1
results: []
banglat5-finetuned-headlineBT5_1000_WithIp_1
This model is a fine-tuned version of csebuetnlp/banglat5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.1889
- Rouge1 Precision: 0.192
- Rouge1 Recall: 0.1481
- Rouge1 Fmeasure: 0.1493
- Rouge2 Precision: 0.034
- Rouge2 Recall: 0.0238
- Rouge2 Fmeasure: 0.0257
- Rougel Precision: 0.1832
- Rougel Recall: 0.1382
- Rougel Fmeasure: 0.1402
- Rouge: {'rouge1_precision': 0.1920136634199134, 'rouge1_recall': 0.14811598124098124, 'rouge1_fmeasure': 0.14925985778926956, 'rouge2_precision': 0.03404265873015873, 'rouge2_recall': 0.023844246031746032, 'rouge2_fmeasure': 0.025712135087135088, 'rougeL_precision': 0.18318429834054833, 'rougeL_recall': 0.13817054473304474, 'rougeL_fmeasure': 0.14016822026013204}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rouge |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.7469 | 1.0 | 160 | 8.0935 | 0.0715 | 0.1039 | 0.0761 | 0.0068 | 0.0122 | 0.0085 | 0.0715 | 0.1039 | 0.0761 | {'rouge1_precision': 0.07145305878761761, 'rouge1_recall': 0.10394435425685425, 'rouge1_fmeasure': 0.07614152865370223, 'rouge2_precision': 0.006805555555555556, 'rouge2_recall': 0.012217261904761904, 'rouge2_fmeasure': 0.008484477124183007, 'rougeL_precision': 0.07145305878761761, 'rougeL_recall': 0.10394435425685425, 'rougeL_fmeasure': 0.07614152865370223} |
8.8874 | 2.0 | 320 | 6.4819 | 0.1136 | 0.1427 | 0.1067 | 0.0217 | 0.0306 | 0.0217 | 0.1129 | 0.1406 | 0.1056 | {'rouge1_precision': 0.11364718738219125, 'rouge1_recall': 0.14271974553224553, 'rouge1_fmeasure': 0.10674004897414845, 'rouge2_precision': 0.02169890873015873, 'rouge2_recall': 0.030600198412698412, 'rouge2_fmeasure': 0.021724970898143597, 'rougeL_precision': 0.11286593738219125, 'rougeL_recall': 0.1406364121989122, 'rougeL_fmeasure': 0.10560368533778482} |
7.5001 | 3.0 | 480 | 5.6537 | 0.1619 | 0.1529 | 0.1379 | 0.0297 | 0.0278 | 0.0251 | 0.1595 | 0.148 | 0.1347 | {'rouge1_precision': 0.16187199952824952, 'rouge1_recall': 0.15293786075036075, 'rouge1_fmeasure': 0.1378562003498065, 'rouge2_precision': 0.029678030303030303, 'rouge2_recall': 0.027787698412698413, 'rouge2_fmeasure': 0.02507508573298047, 'rougeL_precision': 0.15952157217782217, 'rougeL_recall': 0.14802714646464646, 'rougeL_fmeasure': 0.13468312342672956} |
5.9849 | 4.0 | 640 | 5.2887 | 0.1799 | 0.1499 | 0.1427 | 0.0308 | 0.0238 | 0.0241 | 0.1714 | 0.14 | 0.1338 | {'rouge1_precision': 0.17989579864579863, 'rouge1_recall': 0.14991657647907647, 'rouge1_fmeasure': 0.14274962921924997, 'rouge2_precision': 0.030773809523809523, 'rouge2_recall': 0.023844246031746032, 'rouge2_fmeasure': 0.024054670819376702, 'rougeL_precision': 0.1713640526140526, 'rougeL_recall': 0.13997113997113997, 'rougeL_fmeasure': 0.13379535432747508} |
6.7428 | 5.0 | 800 | 5.1889 | 0.192 | 0.1481 | 0.1493 | 0.034 | 0.0238 | 0.0257 | 0.1832 | 0.1382 | 0.1402 | {'rouge1_precision': 0.1920136634199134, 'rouge1_recall': 0.14811598124098124, 'rouge1_fmeasure': 0.14925985778926956, 'rouge2_precision': 0.03404265873015873, 'rouge2_recall': 0.023844246031746032, 'rouge2_fmeasure': 0.025712135087135088, 'rougeL_precision': 0.18318429834054833, 'rougeL_recall': 0.13817054473304474, 'rougeL_fmeasure': 0.14016822026013204} |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1