metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab-main
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.3168215708303544
wav2vec2-large-xls-r-300m-turkish-colab-main
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.3764
- Wer: 0.3168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.822 | 3.67 | 400 | 0.6508 | 0.6687 |
0.399 | 7.34 | 800 | 0.4276 | 0.4480 |
0.1905 | 11.01 | 1200 | 0.3999 | 0.4225 |
0.1249 | 14.68 | 1600 | 0.4302 | 0.3910 |
0.0978 | 18.35 | 2000 | 0.3766 | 0.3682 |
0.0773 | 22.02 | 2400 | 0.3877 | 0.3483 |
0.0597 | 25.69 | 2800 | 0.3833 | 0.3268 |
0.0467 | 29.36 | 3200 | 0.3764 | 0.3168 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1