|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 얌뚱이 칼라고무밴드 머리끈 헤어밴드 고무줄 유아 아동 여아 어린이집 검정 색 대용량 대핑크30g 얌뚱이 |
|
- text: 파티 벨벳 심플 왕리본핀 반묶음핀 30칼라 와인_납작핀대 릴리트리 |
|
- text: 넓은 여자 머리띠 윤아 와이드 귀안아픈 면 니트 터번 T-도톰쫀득_핑크 모스블랑 |
|
- text: 얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 가발 애교머리 풀뱅 규리 민니 옆2p-라이트브라운 굿모닝리테일 |
|
- text: 13cm 빅사이즈 대왕 숱많은 긴 머리 꼬임 올림머리 집게핀 3/ 그라데이션 매트_브라운 블렌디드 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.9541466176054345 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2.0 | <ul><li>'(신세계김해점)에트로 프로푸미 헤어밴드 01046 05 1099 ONE SIZE 신세계백화점'</li><li>'Baby scrunchie 3set (White/Beige/Black) 빌라드실크 곱창밴드 미니 실크 스크런치 세트 주식회사 실크랩'</li><li>'간단 헤어밴드 미키마우스 머리띠 왕 리본 남자 캐릭터 플라스틱 반짝이 1-4. 글리터 / 블랙 아이드림'</li></ul> | |
|
| 1.0 | <ul><li>'위즈템 헤어밴드 진주 크리스탈 머리끈 연핑크 파파닐'</li><li>'둥근고무줄 (대용량) 칼라 금 은 천고무줄 벌크 탄성끈 가는줄 /굵은줄 02. 대용량 굵은줄(2.5mmx60M)_금색 마이1004(MY1004)'</li><li>'천연 컬러 고무 끈 고무줄 생활용품 3M 하늘색 제이앤제이웍스'</li></ul> | |
|
| 0.0 | <ul><li>'인모 남자가발 정수리 커버 자연스러운 O형 커버가발 마오_인모14X14 하이윤'</li><li>'얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 히메컷 사이드뱅 옆2p-내츄럴브라운 와우마켓'</li><li>'얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 옆2p-라이트브라운 이지구'</li></ul> | |
|
| 4.0 | <ul><li>'무지 12컬러 심플 리본 바나나핀 핫핑크 하얀당나귀'</li><li>'네임핀/이름핀/네임브로치/어린이집선물/유치원선물 5글자(영어6자~8자)_별_브로치 쭈스타'</li><li>'메탈 셀룰로오스 꼬임 올림머리 집게핀 사각4170_아이스옐로우 엑스엔서'</li></ul> | |
|
| 3.0 | <ul><li>'웨딩 드레스 유니크 베일 셀프 촬영 소품 대형 리본 잡지 모델 패션쇼 장식 액세서리 머리 04.파란 (핸드메이드) 더비공이(TheB02)'</li><li>'슈퍼 요정 흰색 보석 웨딩 헤어 타워 공연 여행 T15-a_선택하세요 아토버디'</li><li>'뿌리볼륨집게3p 건강드림'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.9541 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_ac16") |
|
# Run inference |
|
preds = model("파티 벨벳 심플 왕리본핀 반묶음핀 30칼라 와인_납작핀대 릴리트리") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.956 | 24 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-----:|:----:|:-------------:|:---------------:| |
|
| 0.025 | 1 | 0.4499 | - | |
|
| 1.25 | 50 | 0.2065 | - | |
|
| 2.5 | 100 | 0.0446 | - | |
|
| 3.75 | 150 | 0.0001 | - | |
|
| 5.0 | 200 | 0.0 | - | |
|
| 6.25 | 250 | 0.0001 | - | |
|
| 7.5 | 300 | 0.0 | - | |
|
| 8.75 | 350 | 0.0 | - | |
|
| 10.0 | 400 | 0.0 | - | |
|
| 11.25 | 450 | 0.0 | - | |
|
| 12.5 | 500 | 0.0 | - | |
|
| 13.75 | 550 | 0.0 | - | |
|
| 15.0 | 600 | 0.0 | - | |
|
| 16.25 | 650 | 0.0 | - | |
|
| 17.5 | 700 | 0.0 | - | |
|
| 18.75 | 750 | 0.0 | - | |
|
| 20.0 | 800 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |