|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 차음료_비락식혜175ml30캔 출산/육아 > 분유 > 국내분유 |
|
- text: Hipp 힙 콤비오틱 유기농 1단계 800g [육아] 분유_Hipp 힙 콤비오틱 유기농 3단계 800g 출산/육아 > 분유 > 수입분유 |
|
- text: 남양유업 아이엠마더 액상 3단계 240ml x96개 출산/육아 > 분유 > 국내분유 |
|
- text: 일동후디스 프리미엄 산양분유 3단계 800g x 1개 [육아] 분유_파스퇴르 무항생제 위드맘 3단계 750g 출산/육아 > 분유 > |
|
국내분유 |
|
- text: 일동후디스 프리미엄 산양분유 1단계 800g x 1개 [음료] 탄산음료_웰치스제로오렌지355ml24캔 출산/육아 > 분유 > 국내분유 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2.0 | <ul><li>'셀렉스 매일 마시는 프로틴 12l 160ml × 48개 출산/육아 > 분유 > 특수분유'</li><li>'일동후디스 초유밀플러스2단계 1캔(1gx90포)) 출산/육아 > 분유 > 특수분유'</li><li>'gvp 스마트폰 카드포켓 스마트링블랙 출산/육아 > 분유 > 특수분유'</li></ul> | |
|
| 0.0 | <ul><li>'매일유업 앱솔루트 명작 2FL 액상 2단계 240ml 24개 x2개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [라면] 봉지라면_얼큰한 너구리 120g 20개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 우유두유_삼육검은콩앤칼슘파우치190ml40팩 출산/육아 > 분유 > 국내분유'</li></ul> | |
|
| 1.0 | <ul><li>'힙 압타밀 HA 뢰벤짠 밀라산 홀레 퇴퍼 베바 세레락 프레 2단계 콤비오틱 무전분 산양 [퇴퍼] Töpfer_퇴퍼 락타나 600g (최대8통)_[1통] xPRE Topfer 출산/육아 > 분유 > 수입분유'</li><li>'뉴트리시아 압타밀 프로누트라 어드밴스 2단계 800g [음료] 탄산음료_데미소다피치250ml30캔 출산/육아 > 분유 > 수입분유'</li><li>'퇴퍼 홀레 뢰벤짠 힙 노발락 압타밀 무전분 AR 킨더밀쉬 압타밀 오가닉(New)_오가닉 2 800g 1통_◆dm4056631003169_1◆ 출산/육아 > 분유 > 수입분유'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_bc6") |
|
# Run inference |
|
preds = model("남양유업 아이엠마더 액상 3단계 240ml x96개 출산/육아 > 분유 > 국내분유") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 7 | 14.9429 | 30 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 70 | |
|
| 2.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0238 | 1 | 0.4943 | - | |
|
| 1.1905 | 50 | 0.4806 | - | |
|
| 2.3810 | 100 | 0.1671 | - | |
|
| 3.5714 | 150 | 0.0003 | - | |
|
| 4.7619 | 200 | 0.0 | - | |
|
| 5.9524 | 250 | 0.0 | - | |
|
| 7.1429 | 300 | 0.0 | - | |
|
| 8.3333 | 350 | 0.0 | - | |
|
| 9.5238 | 400 | 0.0 | - | |
|
| 10.7143 | 450 | 0.0 | - | |
|
| 11.9048 | 500 | 0.0 | - | |
|
| 13.0952 | 550 | 0.0 | - | |
|
| 14.2857 | 600 | 0.0 | - | |
|
| 15.4762 | 650 | 0.0 | - | |
|
| 16.6667 | 700 | 0.0 | - | |
|
| 17.8571 | 750 | 0.0 | - | |
|
| 19.0476 | 800 | 0.0 | - | |
|
| 20.2381 | 850 | 0.0 | - | |
|
| 21.4286 | 900 | 0.0 | - | |
|
| 22.6190 | 950 | 0.0 | - | |
|
| 23.8095 | 1000 | 0.0 | - | |
|
| 25.0 | 1050 | 0.0 | - | |
|
| 26.1905 | 1100 | 0.0 | - | |
|
| 27.3810 | 1150 | 0.0 | - | |
|
| 28.5714 | 1200 | 0.0 | - | |
|
| 29.7619 | 1250 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |