File size: 10,085 Bytes
8a1b1e7 b37ae14 8a1b1e7 b37ae14 8a1b1e7 b37ae14 8a1b1e7 b37ae14 8a1b1e7 b37ae14 8a1b1e7 7a8b616 8a1b1e7 6151c00 8a1b1e7 6151c00 b37ae14 6151c00 7a8b616 b37ae14 7a8b616 8a1b1e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 루핀 젤크리너 1000ml 젤리무버 아세톤 젤클리너 루핀젤리무버1000ml 건강드림
- text: 요거트젤 버니츄 s63 베리츄 봄컬러 파스텔시럽젤 S56 핑크츄 더메이트
- text: 코스노리 컬러테라피 네일세럼 4ml 01 시트러스 (주)그레이스클럽
- text: 더젤 젤리무버 더젤 젤리무버 + 오팔스톤2알 주식회사 이룸
- text: 리본머리핀 태닝키티네일파츠(1개입)1-핑크리본머리핀 레드 리본머리핀(1개입) 올리비아수(oliviasoo)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.6072186836518046
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 | <ul><li>'요거트네일 젤네일 화양연화 9종세트 글리터컬러 시럽컬러 옵션없음 주식회사 코즈랩'</li><li>'프롬더네일 로코 핑크 자석젤 자석네일 단품 진주 2알 FG130+진주 2알 백억언니'</li><li>'루벤스 바르면 펴지는 딱 올려젤 10ml 3개입 내성발톱 문제성발톱 옵션없음 제네시스오브네일'</li></ul> |
| 5.0 | <ul><li>'[1+1] 데싱디바 글레이즈 여름 최신상 젤네일&페디 DASHING DIVA'</li><li>'잇템샵 네일팁 인조손톱 패디팁 붙이는네일아트 페디큐어 브라이트핑크 내가원하는잇템샵'</li><li>'크레아 네일 디자인팁 수제팁 택1 DMC 네일아트재료'</li></ul> |
| 1.0 | <ul><li>'모양89 스톤와이어 리본 네일스티커 블루믹스 (AF-01) 단지네 네일가게'</li><li>'태닝키티파츠 TKT-02-08 썬탠키티 5개입 탄 갸루 하와이 비키니 태닝키티파츠 TKT-02-01 5개입 임프주식회사'</li><li>'네일아트 리필팁 네일팁 숏오발 A타입클리어1호-50개입 풀팁_1.클리어_8호(8.2X21mm) 단지네 네일가게'</li></ul> |
| 0.0 | <ul><li>'블루크로스 큐티클리무버 32oz+뾰족캡 공병 32oz (+뾰족캡 공병 증정♥) 주식회사 시그니처바스켓(SIGNATURE BASKET)'</li><li>'루핀 젤클리너 젤리무버 500ml 아세톤 젤클렌져 루핀젤리무버500ml 신나라닷컴'</li><li>'블루크로스 큐티클 리무버 6oz 리무버 오일펜 공병 6oz+오일펜1개+공병1개 2N(투엔)'</li></ul> |
| 3.0 | <ul><li>'손톱깎이 클리퍼 세트 가정용 관리 기기 Green 4-piece set 영무몰'</li><li>'Coms LED 손톱깎이돋보기CW-816 조명 KW6E00D3 옵션없음 하니스토어13'</li><li>'메이보릿 메보카세 브러쉬 셋트 , 실버글로시 옵션없음 마법사네일'</li></ul> |
| 4.0 | <ul><li>'[위드샨] 맞춤 케어 2종 세트 (3타입 중 택1) 잘 부러지고 약한 손톱(스트랭쓰너+쉴드탑) 주식회사손과발'</li><li>'셀프 젤네일 세트 홈 키트 로나네일'</li><li>'루카너스 프리미엄구성 여자친구선물 셀프네일세트 큐티클제거 손톱관리 네일세트 9종 1박스 루카너스'</li></ul> |
| 2.0 | <ul><li>'퍼펙토 발톱연화제 나겔바이셔 20ml 발톱연화제 1개+2in1 큐렛&샤퍼 1개 주식회사 킹케어(KINGCAIR Co., Ltd.)'</li><li>'뉴 요피클리어 13ml 핑거스 문제성 손발톱관리 리뉴얼 세럼 옵션없음 제이비컴퍼니'</li><li>'케라셀 패치 14매 나이트타임 손발톱영양제 손발톱 강화제 옵션없음 행운'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.6072 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test")
# Run inference
preds = model("더젤 젤리무버 더젤 젤리무버 + 오팔스톤2알 주식회사 이룸")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 9.3955 | 18 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 16 |
| 1.0 | 19 |
| 2.0 | 21 |
| 3.0 | 32 |
| 4.0 | 10 |
| 5.0 | 16 |
| 6.0 | 20 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0625 | 1 | 0.4888 | - |
| 3.125 | 50 | 0.3006 | - |
| 6.25 | 100 | 0.0746 | - |
| 9.375 | 150 | 0.0192 | - |
| 12.5 | 200 | 0.0002 | - |
| 15.625 | 250 | 0.0001 | - |
| 18.75 | 300 | 0.0001 | - |
| 21.875 | 350 | 0.0001 | - |
| 25.0 | 400 | 0.0001 | - |
| 28.125 | 450 | 0.0 | - |
| 31.25 | 500 | 0.0 | - |
| 34.375 | 550 | 0.0 | - |
| 37.5 | 600 | 0.0 | - |
| 40.625 | 650 | 0.0 | - |
| 43.75 | 700 | 0.0 | - |
| 46.875 | 750 | 0.0 | - |
| 50.0 | 800 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |