File size: 10,085 Bytes
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
b37ae14
 
 
 
 
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
 
b37ae14
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37ae14
 
 
 
 
 
 
 
 
8a1b1e7
 
 
 
 
 
b37ae14
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37ae14
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8b616
8a1b1e7
 
6151c00
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
 
 
6151c00
 
b37ae14
 
 
 
 
 
6151c00
7a8b616
 
b37ae14
7a8b616
 
 
 
 
 
 
8a1b1e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 루핀 젤크리너 1000ml 젤리무버 아세톤 젤클리너 루핀젤리무버1000ml 건강드림
- text: 요거트젤 버니츄 s63 베리츄 봄컬러 파스텔시럽젤 S56 핑크츄 더메이트
- text: 코스노리 컬러테라피 네일세럼 4ml 01 시트러스 (주)그레이스클럽
- text: 더젤 젤리무버 더젤 젤리무버 + 오팔스톤2알 주식회사 이룸
- text: 리본머리핀 태닝키티네일파츠(1개입)1-핑크리본머리핀 레드 리본머리핀(1개입) 올리비아수(oliviasoo)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.6072186836518046
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                            |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'요거트네일 젤네일 화양연화 9종세트 글리터컬러 시럽컬러 옵션없음 주식회사 코즈랩'</li><li>'프롬더네일 로코 핑크 자석젤 자석네일 단품 진주 2알 FG130+진주 2알 백억언니'</li><li>'루벤스 바르면 펴지는 딱 올려젤 10ml 3개입 내성발톱 문제성발톱 옵션없음 제네시스오브네일'</li></ul>                             |
| 5.0   | <ul><li>'[1+1] 데싱디바 글레이즈 여름 최신상 젤네일&페디 DASHING DIVA'</li><li>'잇템샵 네일팁 인조손톱 패디팁 붙이는네일아트 페디큐어 브라이트핑크 내가원하는잇템샵'</li><li>'크레아 네일 디자인팁 수제팁 택1 DMC 네일아트재료'</li></ul>                                                      |
| 1.0   | <ul><li>'모양89 스톤와이어 리본 네일스티커 블루믹스 (AF-01) 단지네 네일가게'</li><li>'태닝키티파츠 TKT-02-08 썬탠키티 5개입 탄 갸루 하와이 비키니 태닝키티파츠 TKT-02-01 5개입 임프주식회사'</li><li>'네일아트 리필팁 네일팁 숏오발 A타입클리어1호-50개입 풀팁_1.클리어_8호(8.2X21mm) 단지네 네일가게'</li></ul>  |
| 0.0   | <ul><li>'블루크로스 큐티클리무버 32oz+뾰족캡 공병 32oz (+뾰족캡 공병 증정♥) 주식회사 시그니처바스켓(SIGNATURE BASKET)'</li><li>'루핀 젤클리너 젤리무버 500ml 아세톤 젤클렌져 루핀젤리무버500ml 신나라닷컴'</li><li>'블루크로스 큐티클 리무버 6oz 리무버 오일펜 공병 6oz+오일펜1개+공병1개 2N(투엔)'</li></ul> |
| 3.0   | <ul><li>'손톱깎이 클리퍼 세트 가정용 관리 기기 Green 4-piece set 영무몰'</li><li>'Coms LED 손톱깎이돋보기CW-816 조명 KW6E00D3 옵션없음 하니스토어13'</li><li>'메이보릿 메보카세 브러쉬 셋트 , 실버글로시 옵션없음 마법사네일'</li></ul>                                             |
| 4.0   | <ul><li>'[위드샨] 맞춤 케어 2종 세트 (3타입 중 택1) 잘 부러지고 약한 손톱(스트랭쓰너+쉴드탑) 주식회사손과발'</li><li>'셀프 젤네일 세트 홈 키트 로나네일'</li><li>'루카너스 프리미엄구성 여자친구선물 셀프네일세트 큐티클제거 손톱관리 네일세트 9종 1박스 루카너스'</li></ul>                                      |
| 2.0   | <ul><li>'퍼펙토 발톱연화제 나겔바이셔 20ml 발톱연화제 1개+2in1 큐렛&샤퍼 1개 주식회사 킹케어(KINGCAIR Co., Ltd.)'</li><li>'뉴 요피클리어 13ml 핑거스 문제성 손발톱관리 리뉴얼 세럼 옵션없음 제이비컴퍼니'</li><li>'케라셀 패치 14매 나이트타임 손발톱영양제 손발톱 강화제 옵션없음 행운'</li></ul>              |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.6072   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test")
# Run inference
preds = model("더젤 젤리무버 더젤 젤리무버 + 오팔스톤2알 주식회사 이룸")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 4   | 9.3955 | 18  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 16                    |
| 1.0   | 19                    |
| 2.0   | 21                    |
| 3.0   | 32                    |
| 4.0   | 10                    |
| 5.0   | 16                    |
| 6.0   | 20                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0625 | 1    | 0.4888        | -               |
| 3.125  | 50   | 0.3006        | -               |
| 6.25   | 100  | 0.0746        | -               |
| 9.375  | 150  | 0.0192        | -               |
| 12.5   | 200  | 0.0002        | -               |
| 15.625 | 250  | 0.0001        | -               |
| 18.75  | 300  | 0.0001        | -               |
| 21.875 | 350  | 0.0001        | -               |
| 25.0   | 400  | 0.0001        | -               |
| 28.125 | 450  | 0.0           | -               |
| 31.25  | 500  | 0.0           | -               |
| 34.375 | 550  | 0.0           | -               |
| 37.5   | 600  | 0.0           | -               |
| 40.625 | 650  | 0.0           | -               |
| 43.75  | 700  | 0.0           | -               |
| 46.875 | 750  | 0.0           | -               |
| 50.0   | 800  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->