|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: LG전자 24V50N-GR35K 정윤아 |
|
- text: '[윈도우11 홈] 이그닉 비와이 프로 27Y 2535 (5년 A/S) 게이밍 일체형 PC NVMe 1TB_16GB RAM 이그닉 주식회사' |
|
- text: Dell 옵티플렉스 7020MFF i3-14100T 사무용 업무용 마이크로 폼펙터 초소형 PC 키보드 마우스 포함 주식회사 아이딜컴퍼니 |
|
- text: i5 13400F RX6600 본체 게이밍 PC 컴퓨터 G346A 1.G20-블랙_기본선택 애즈락 B610M D5 리메이드 컴퓨터 |
|
- text: 삼성전자 데스크탑 DM500TEA-A58A 컴퓨터 인텔i5-12세대 윈도우11홈 강의 재택근무 사무용 주식회사 에스씨엔씨 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8841463414634146 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2 | <ul><li>'몬스타기어 7500F 4070 SUPER 32G 500GB 조립PC AMD 7500F 4070SUPER 32G 500GB 몬스타 주식회사'</li><li>'사무용 주식 인텔 i3 12100F/GT710/SSD 250G/8G 조립컴퓨터 컴퓨터본체 데스크탑 컴퓨터 조립PC 기본사양(추가구성에서 사양변경 가능) (주)아싸컴'</li><li>'장우컴 가정용 PC (13100F/8G/GT1030/256G) i40207 (주)장우컴퍼니'</li></ul> | |
|
| 0 | <ul><li>'T) DELL 옵티플렉스 7010SFF-UB02KR (NVMe 512G 교체 장착) 윈11프로 DSP설치 으뜸'</li><li>'이그닉 비와이 프로 27Y 4535 OS 미포함 NVMe 512G + 16GB RAM (5년 A/S) 빌리어네어에프'</li><li>'10만원 쿠폰💖 삼성 DM500TFA-A78A 데스크탑 인텔 13세대 i7 [기본제품] (주)컴퓨존'</li></ul> | |
|
| 1 | <ul><li>'레노버 씽크스테이션 P620 라이젠 스레드리퍼 프로 5945WX RAM16GB SSD256GB NVMe HDD1TB NOVGA Win11 Pro (주)디지탈노뜨'</li><li>'[Dell] Precision 3460 SFF i7-13700 8GB 1TB [추가구성 필요] (주)다인엔시스'</li><li>'HP DL20 GEN10 E-2224 / 32G / HDD 1T x2 RAID1 / 서버2019 / AS3년 상품권 주식회사 제로원씨앤씨'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8841 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el0") |
|
# Run inference |
|
preds = model("LG전자 24V50N-GR35K 정윤아") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 4 | 11.6691 | 21 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 36 | |
|
| 2 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0455 | 1 | 0.4961 | - | |
|
| 2.2727 | 50 | 0.005 | - | |
|
| 4.5455 | 100 | 0.0001 | - | |
|
| 6.8182 | 150 | 0.0001 | - | |
|
| 9.0909 | 200 | 0.0 | - | |
|
| 11.3636 | 250 | 0.0 | - | |
|
| 13.6364 | 300 | 0.0 | - | |
|
| 15.9091 | 350 | 0.0 | - | |
|
| 18.1818 | 400 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |