|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 원목 듀얼 모니터받침대 미송 B타입 M 주식회사 제이테크(J-TECH) |
|
- text: 대형 게이밍모니터거치대 카멜마운트 PMA-2U USB지원 32인치 거치가능 모니터암 블랙 (주)순천물류 |
|
- text: 카멜마운트 CMA2V 듀얼 벽면 밀착형 상하 거치대 모니터암 블랙 주식회사 카멜인터내셔널 |
|
- text: 알파스캔 AOC AM400 시에라 블루 싱글 모니터암 컴퓨터 27인치 32인치 브라켓 AM400 로즈쿼츠 주식회사 멀티스캔텍 |
|
- text: 카멜인터내셔널 카멜마운트 고든 DMA-DSS 벽면 밀착형 듀얼 모니터암 (주)아이티엔조이 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8586497890295358 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 5 | <ul><li>'(주)근호컴 [리버네트워크]USB 2.0 리피터 전용 전원 어댑터 (NX-USBEXPW) (주)근호컴'</li><li>'NEXI 넥시 정품 NX-USBEXPW아답터 (NX0284) (주)유니정보통신'</li><li>'국산 12V 5A 모니터 아답터 ML-125A 헤라유통'</li></ul> | |
|
| 3 | <ul><li>'카멜마운트 GDA3 고든 디자인 모니터 거치대 모니터암 듀얼 블랙 주식회사 카멜인터내셔널'</li><li>'카멜 CA2 화이트 나뭉'</li><li>'마루느루 마운트뷰 MV-G1A 셜크'</li></ul> | |
|
| 0 | <ul><li>'셋탑 박스 게임기 리모컨 수납 TV 모니터 TOP 공간 선반 공유기 거치대 아이디어윙'</li><li>'리모컨수납 TV 모니터 TOP 공간선반 Black 연상연하'</li><li>'애니포트 TV거치대 엘마운트 다용도 멀티 선반 S900 이스토어'</li></ul> | |
|
| 1 | <ul><li>'ELLOVEN 엘로벤 모니터스탠드+서랍 엘로벤 스탠드 앤트러 (804.851.02) 랩앤툴스'</li><li>'썬엔원 유보드 모니터받침대 U-BOARD Basic [화이트] 강화유리 / 유리색상: 투명 블랙 (주)세븐앤씨'</li><li>'앱코 MES100 사이드 폴딩 모니터 받침대 선반 받침 서랍 데스크 정리 블랙 앱코 MES100 블랙 (주)드림팩토리샵'</li></ul> | |
|
| 2 | <ul><li>'아이존아이앤디 EZ MSM-10 아이러브드라이브(I Love Drive)'</li><li>'아이존아이앤디 EZ MSM-10/EZ MSM-10/조절브라켓/모니터스탠드/높낮이조절/조절스탠드/모니터홀타입/홀타입스탠드 EZ MSM-10 기쁘다희샵'</li><li>'루나랩 베사확장브라켓 200x100 200x200 주식회사 루나'</li></ul> | |
|
| 4 | <ul><li>'지클릭커 휴 쉴드 PET 부착식 정보보호 모니터 보안필름 22인치 가이드컴퓨터'</li><li>'힐링쉴드 11890340 22인치 모니터 블루라이트차단 보호필름 거치식 조립형 양면필터 온라인정품인증점'</li><li>'지클릭커 휴 쉴드 PET 부착식 정보보호 모니터 보안필름 22인치 주식회사 리더샵'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8586 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el10") |
|
# Run inference |
|
preds = model("원목 듀얼 모니터받침대 미송 B타입 M 주식회사 제이테크(J-TECH)") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 9.9725 | 24 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 50 | |
|
| 2 | 13 | |
|
| 3 | 50 | |
|
| 4 | 5 | |
|
| 5 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0286 | 1 | 0.4958 | - | |
|
| 1.4286 | 50 | 0.0386 | - | |
|
| 2.8571 | 100 | 0.0016 | - | |
|
| 4.2857 | 150 | 0.0001 | - | |
|
| 5.7143 | 200 | 0.0 | - | |
|
| 7.1429 | 250 | 0.0 | - | |
|
| 8.5714 | 300 | 0.0 | - | |
|
| 10.0 | 350 | 0.0 | - | |
|
| 11.4286 | 400 | 0.0001 | - | |
|
| 12.8571 | 450 | 0.0 | - | |
|
| 14.2857 | 500 | 0.0001 | - | |
|
| 15.7143 | 550 | 0.0 | - | |
|
| 17.1429 | 600 | 0.0001 | - | |
|
| 18.5714 | 650 | 0.0 | - | |
|
| 20.0 | 700 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |