master_cate_fd11 / README.md
mini1013's picture
Push model using huggingface_hub.
b8f8716 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: '[바다원] 깨끗한 돌김자반볶음 오리지널 40g x 5봉  (주)씨제이이엔엠'
  - text: 쭈꾸미사령부 매운맛 300g 3 불타는 매운맛 원츄쟈챠
  - text: 냉동 새우 튀김 300g 6 10 대용량 업소용 빵가루 왕새우튀김 코코넛쉬림프 360g (30미) 주식회사 더꽃게
  - text: 잇투헤븐 팔당  오징어 매운 오징어 볶음 400g 쭈꾸미도사 쭈꾸미볶음 01.팔당불오징어400g 1 (주)잇투헤븐
  - text: CJ 명가김 파래김 4g 16  트릴리어네어스
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.8689361702127659
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '훈제연어(통) 약1.1kg 냉동연어 필렛 슬라이스 칠레산 HACCP 국내가공 화이트베어 화이트베어 훈제연어슬라이스 ±1.3kg 주식회사 셀피'
  • '안동간고등어 80g 10팩(5마리) 동의합니다_80g 10팩(5마리) 델리아마켓'
  • '제주 국내산 손질 고등어 2KG 한팩150g이상 11-12팩 3KG(16-19팩) 효명가'
1.0
  • '동원F&B 양반 김치맛 김부각 50g 1개 동원F&B 양반 김치맛 김부각 50g 1개 다팔아스토어'
  • '오뚜기 옛날 자른미역 50G 대성상사'
  • '환길산업 섬마을 해초샐러드 냉동 해초무침 2kg 제루통상'
0.0
  • 'Fish Tree 국물용멸치 1.3kg 케이원'
  • 'Fish Tree 국물용 볶음용 멸치 1.3kg 1kg 뼈건강 깊은맛 육수 대멸치 좋은식감 국물용 멸치 1.3kg 유라너스'
  • 'Fish Tree 국물용 멸치 1.3kg 이숍'
3.0
  • '랭킹수산 장어구이 혼합 140gx20팩(데리야끼10매콤10) -인증 제이원무역'
  • '올반 대왕 오징어튀김 400g 나라유통'
  • '바다愛한끼 이원일 연평도 꽃게 해물탕 760g 소스포함 2팩 (주)티알엔'
5.0
  • '날치알 동림 담홍 레드 800G [800G][동림]날치알(골드)(팩) 주식회사 명품씨푸드'
  • '날치알 동림 담홍 레드 800G [800G][동림]날치알(레드)(팩) 주식회사 명품씨푸드'
  • '날치알 동림 담홍 레드 800G [800gG[코아]날치알[골드] 주식회사 명품씨푸드'
4.0
  • '명인오가네 연어장 250g 명인오가네몰'
  • '[나브연] 수제 간장 연어장 750g 덜짜게 주희종'
  • '[나브연] 수제 간장 연어장 500g 보통 주희종'

Evaluation

Metrics

Label Metric
all 0.8689

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd11")
# Run inference
preds = model("CJ 명가김 파래김 4g 16입  트릴리어네어스")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.1164 23
Label Training Sample Count
0.0 50
1.0 50
2.0 50
3.0 50
4.0 50
5.0 25

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0233 1 0.4609 -
1.1628 50 0.2116 -
2.3256 100 0.0876 -
3.4884 150 0.0442 -
4.6512 200 0.0254 -
5.8140 250 0.0133 -
6.9767 300 0.0252 -
8.1395 350 0.0176 -
9.3023 400 0.0116 -
10.4651 450 0.004 -
11.6279 500 0.0231 -
12.7907 550 0.0023 -
13.9535 600 0.0017 -
15.1163 650 0.0002 -
16.2791 700 0.0001 -
17.4419 750 0.0001 -
18.6047 800 0.0001 -
19.7674 850 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}