|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 한끼스토리 딸기드레싱 500g 10개 한울마켓 |
|
- text: 맷돌표 뉴슈가 60g/ 20개 (주)디엔제이 |
|
- text: 하회마을 쌈장 14kg 업소용 대용량 물레푸드 |
|
- text: 화가장가평발효과학 국산콩청국장 120g16팩 화가장 주식회사 |
|
- text: 춘장(삼화 300g) 4개 식자재 업소용 대용량 더착한컴퍼니 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8727670433831571 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 9 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 8.0 | <ul><li>'아이스티음료 복숭아음료 립톤 음료 베이스 가루 업소 대용량 907g 온달이'</li><li>'죽순캔(진양 400g)X4 진양 400g)X4 프렌들리 컴퍼니'</li><li>'커피믹스(맥심 2.04k) X6 모카골드 오구오구(5959)'</li></ul> | |
|
| 0.0 | <ul><li>'청정원 장아찌 간장소스 1.7L 착한사람들'</li><li>'몽고 송표 골드 간장 1.5L 몽고식품(주)창원1공장'</li><li>'샘표 맛간장 조림볶음용 보니따엠'</li></ul> | |
|
| 3.0 | <ul><li>'으뜸 낫또 제주콩 생나또 53 g 특허기술로 만든 생 청국장 실이많은 생낫또 24 팩 혼합구성_생낫또 18 개 + 하나또 18 개 (주)으뜸엘엔에스'</li><li>'국산콩100g 12개 일본장인전수 수제 가정생낫또 나또 사또 검정콩 쥐눈이 대용량 검정콩100g 10개_간장360ml 가정생청국장'</li><li>'청정 제주콩 생 낫또 36개 주식회사 네오넥스글로벌'</li></ul> | |
|
| 4.0 | <ul><li>'CJ 해찬들 그대로 된장찌개양념 450gx3 고깃집 된장찌개용 차돌 조개 코스트코 1021460 4 바지락꽃게 3개 까까아일랜드'</li><li>'[2+1] 해찬들 물로만 끓여도 차돌 된장찌개 양념 450G 물로만 끓여도 차돌 된장찌개 450Gx3 메가글로벌001'</li><li>'[샘표]샘표 토장 900g 티디티유통'</li></ul> | |
|
| 1.0 | <ul><li>'안동제비원 고추장 담그기 세트 (약7kg)[33628066] (주)엔에스쇼핑'</li><li>'CJ 해찬들 태양초 알찬 고추장 6.5kg 리브웨이'</li><li>'청정원순창 현미 태양초 찰고추장, 2kg, 1개 2kg × 1개 2kg x 1개 카리스광클'</li></ul> | |
|
| 6.0 | <ul><li>'샘표 쌈토장 450g 대성상사'</li><li>'참고을 신선한 쌈장 14kg 맛있는 쌈장 대용량 업소용 쌈장 지함 순창궁 양념 쌈장 14kg 우성수산'</li><li>'청정원 순창 쌈장골드 4.8kg 주식회사 푸드공공칠'</li></ul> | |
|
| 5.0 | <ul><li>'콩마실 국산 메주 가루 (1kg 국산콩100%, 고추장용) 콩마실'</li><li>'고령 국산 메주 전통 국산콩메주 세트 5kg 장현식품'</li><li>'100%국산콩으로 만든 순창 전통메주 1덩이 1.2kg내외 열정농부'</li></ul> | |
|
| 7.0 | <ul><li>'고추명가 비빔냉면 소스 2kg 냉면 양념장 비냉 비빔장 국수 양념 다대기 식당업소용 대용량 이도'</li><li>'CJ 손맛 다담 안동찜닭 양념 220g 분식 식당 식자재 감칠맛 풍미 맛다시 제이지무역'</li><li>'연안식당 부추꼬막장 150g 앙념 비빔장 꼬막비빔밥 밥도둑 꼬막장 넉넉한 2인분 주식회사 디딤'</li></ul> | |
|
| 2.0 | <ul><li>'오뚜기 가쓰오부시 장국 360ml 외 7종 01_가쓰오부시 장국 360ml 주식회사 삼부'</li><li>'면사랑 프리미엄 메밀장국 1.8L 모밀 소바 육수 장국 국수 찌개 만능 다시 문화벙커'</li><li>'뽕보감 조청 1000g 철원군농업기술센터'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8728 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_fd15") |
|
# Run inference |
|
preds = model("맷돌표 뉴슈가 60g/ 20개 (주)디엔제이") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.8578 | 26 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 22 | |
|
| 6.0 | 50 | |
|
| 7.0 | 50 | |
|
| 8.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0152 | 1 | 0.3728 | - | |
|
| 0.7576 | 50 | 0.2769 | - | |
|
| 1.5152 | 100 | 0.1245 | - | |
|
| 2.2727 | 150 | 0.0532 | - | |
|
| 3.0303 | 200 | 0.0532 | - | |
|
| 3.7879 | 250 | 0.0385 | - | |
|
| 4.5455 | 300 | 0.0052 | - | |
|
| 5.3030 | 350 | 0.0025 | - | |
|
| 6.0606 | 400 | 0.0004 | - | |
|
| 6.8182 | 450 | 0.0004 | - | |
|
| 7.5758 | 500 | 0.0005 | - | |
|
| 8.3333 | 550 | 0.0007 | - | |
|
| 9.0909 | 600 | 0.0002 | - | |
|
| 9.8485 | 650 | 0.0002 | - | |
|
| 10.6061 | 700 | 0.0001 | - | |
|
| 11.3636 | 750 | 0.0001 | - | |
|
| 12.1212 | 800 | 0.0001 | - | |
|
| 12.8788 | 850 | 0.0001 | - | |
|
| 13.6364 | 900 | 0.0001 | - | |
|
| 14.3939 | 950 | 0.0001 | - | |
|
| 15.1515 | 1000 | 0.0001 | - | |
|
| 15.9091 | 1050 | 0.0001 | - | |
|
| 16.6667 | 1100 | 0.0001 | - | |
|
| 17.4242 | 1150 | 0.0001 | - | |
|
| 18.1818 | 1200 | 0.0001 | - | |
|
| 18.9394 | 1250 | 0.0 | - | |
|
| 19.6970 | 1300 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |