|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: finetune-newwiki-summarization-ver-augmented |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetune-newwiki-summarization-ver-augmented |
|
|
|
This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4282 |
|
- Rouge1: 48.7749 |
|
- Rouge2: 26.3665 |
|
- Rougel: 35.7765 |
|
- Rougelsum: 38.0111 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 7 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.6784 | 1.0 | 2312 | 0.5136 | 46.7374 | 23.3000 | 33.5379 | 35.8923 | |
|
| 0.6015 | 2.0 | 4624 | 0.4759 | 47.7112 | 24.5817 | 34.4939 | 36.9831 | |
|
| 0.5587 | 3.0 | 6936 | 0.4543 | 48.4891 | 25.6592 | 35.2310 | 37.5477 | |
|
| 0.5128 | 4.0 | 9248 | 0.4405 | 48.7777 | 26.0690 | 35.5187 | 37.7896 | |
|
| 0.4899 | 5.0 | 11560 | 0.4338 | 48.6758 | 26.0670 | 35.5783 | 37.8850 | |
|
| 0.4796 | 6.0 | 13872 | 0.4295 | 48.8914 | 26.5018 | 35.8671 | 38.1289 | |
|
| 0.4671 | 7.0 | 16184 | 0.4282 | 48.7749 | 26.3665 | 35.7765 | 38.0111 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|