asr_IT_AUG_Synth / README.md
miosipof's picture
End of training
6e706cc verified
metadata
library_name: peft
language:
  - it
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - ASR_Synthetic_Speecht5_TTS
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ASR_Synthetic_Speecht5_TTS
          type: ASR_Synthetic_Speecht5_TTS
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 75.9656652360515
            name: Wer

Whisper Medium

This model is a fine-tuned version of openai/whisper-medium on the ASR_Synthetic_Speecht5_TTS dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1269
  • Wer: 75.9657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.8335 0.0244 25 7.0413 196.1373
6.5445 0.0489 50 5.3231 160.5150
4.2166 0.0733 75 3.6955 144.6352
2.2081 0.0978 100 3.5441 84.9785
1.815 0.1222 125 3.4335 83.4049
1.6465 0.1467 150 3.2851 136.9099
1.5241 0.1711 175 3.3021 357.3677
1.3811 0.1956 200 3.2476 81.5451
1.2553 0.2200 225 3.1495 132.1888
1.3158 0.2445 250 3.1816 76.9671
1.2942 0.2689 275 3.1349 74.3920
1.1935 0.2934 300 3.1269 75.9657

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.2.0
  • Datasets 3.1.0
  • Tokenizers 0.19.1