|
from typing import Any, Dict |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code = True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
return_dict = True, |
|
device_map = "auto", |
|
torch_dtype = dtype, |
|
trust_remote_code = True, |
|
quantization_config=quantization_config |
|
) |
|
|
|
gen_config = model.generation_config |
|
gen_config.max_new_tokens = 256 |
|
gen_config.num_return_sequences = 1 |
|
gen_config.pad_token_id = tokenizer.eos_token_id |
|
gen_config.eos_token_id = tokenizer.eos_token_id |
|
|
|
self.generation_config = gen_config |
|
|
|
self.pipeline = pipeline( |
|
'text-generation', model=model, tokenizer=tokenizer |
|
) |
|
|
|
|
|
|
|
def __call__(self, data: Dict[dict, Any]) -> Dict[str, Any]: |
|
prompt = data.pop("inputs", data) |
|
|
|
instruction = "Create a list of chords,a corresponding scale to improve with, title, and style along with an example in ABC notation based on this input in JSON format." |
|
|
|
full_prompt = f"""<s> |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{prompt} |
|
### Response: |
|
""" |
|
|
|
result = self.pipeline(full_prompt, generation_config = self.generation_config)[0] |
|
|
|
return result |