|
--- |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
tags: |
|
- mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
- dpo |
|
- rlhf |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- mlabonne/chatml_dpo_pairs |
|
--- |
|
|
|
<center><img src="https://i.imgur.com/qIhaFNM.png"></center> |
|
|
|
# NeuralHermes 2.5 - Mistral 7B - GGUF |
|
|
|
NeuralHermes is an [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. |
|
|
|
It is directly inspired by the RLHF process described by [neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. I haven't performed a comprehensive evaluation of the model, but it works great, nothing broken apparently! :) |
|
|
|
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour. |
|
|
|
Link to the original model: [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B). |
|
|
|
Article and code to quantize your own LLMs: [Quantize Llama models with GGUF and llama.cpp](https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html) |
|
|
|
## Usage |
|
|
|
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend. |
|
|
|
You can also run this model using the following code: |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
# Format prompt |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(new_model) |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
# Create pipeline |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=new_model, |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Generate text |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |
|
|
|
|
|
## Training hyperparameters |
|
|
|
**LoRA**: |
|
* r=16, |
|
* lora_alpha=16, |
|
* lora_dropout=0.05, |
|
* bias="none", |
|
* task_type="CAUSAL_LM", |
|
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] |
|
|
|
**Training arguments**: |
|
* per_device_train_batch_size=4, |
|
* gradient_accumulation_steps=4, |
|
* gradient_checkpointing=True, |
|
* learning_rate=5e-5, |
|
* lr_scheduler_type="cosine", |
|
* max_steps=200, |
|
* optim="paged_adamw_32bit", |
|
* warmup_steps=100, |
|
|
|
**DPOTrainer**: |
|
* beta=0.1, |
|
* max_prompt_length=1024, |
|
* max_length=1536, |