|
--- |
|
license: creativeml-openrail-m |
|
language: |
|
- en |
|
library_name: diffusers |
|
pipeline_tag: text-to-image |
|
tags: |
|
- stable-diffusion |
|
- cvpr |
|
- text-to-image |
|
- image-generation |
|
- compositionality |
|
--- |
|
# 🧩 TokenCompose SD21 Model Card |
|
|
|
## 🎬CVPR 2024 |
|
[TokenCompose_SD21_A](https://mlpc-ucsd.github.io/TokenCompose/) is a [latent text-to-image diffusion model](https://arxiv.org/abs/2112.10752) finetuned from the [**Stable-Diffusion-v2-1**](https://huggingface.co/stabilityai/stable-diffusion-2-1) checkpoint at resolution 768x768 on the [VSR](https://github.com/cambridgeltl/visual-spatial-reasoning) split of [COCO image-caption pairs](https://cocodataset.org/#download) for 32,000 steps with a learning rate of 5e-6. The training objective involves token-level grounding terms in addition to denoising loss for enhanced multi-category instance composition and photorealism. The "_A/B" postfix indicates different finetuning runs of the model using the same above configurations. |
|
|
|
# 📄 Paper |
|
|
|
Please follow [this](https://arxiv.org/abs/2312.03626) link. |
|
|
|
# 🧨Example Usage |
|
|
|
We strongly recommend using the [🤗Diffuser](https://github.com/huggingface/diffusers) library to run our model. |
|
|
|
```python |
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
|
|
model_id = "mlpc-lab/TokenCompose_SD21_A" |
|
device = "cuda" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) |
|
pipe = pipe.to(device) |
|
|
|
prompt = "A cat and a wine glass" |
|
image = pipe(prompt).images[0] |
|
|
|
image.save("cat_and_wine_glass.png") |
|
``` |
|
|
|
# ⬆️Improvements over SD21 |
|
|
|
| Model | Object Accuracy | MG3 COCO | MG4 COCO | MG5 COCO | MG3 ADE20K | MG4 ADE20K | MG5 ADE20K | FID COCO | |
|
|---------------------|-----------------|----------|----------|----------|------------|------------|------------|----------| |
|
| SD21 | 47.82 | 70.14 | 25.57 | 3.27 | 75.13 | 35.07 | 7.16 | 19.59 | |
|
| TokenCompose (SD21) | 60.10 | 80.48 | 36.69 | 5.71 | 79.51 | 39.59 | 8.13 | 19.15 | |
|
|
|
# 📰 Citation |
|
```bibtex |
|
@InProceedings{Wang2024TokenCompose, |
|
author = {Wang, Zirui and Sha, Zhizhou and Ding, Zheng and Wang, Yilin and Tu, Zhuowen}, |
|
title = {TokenCompose: Text-to-Image Diffusion with Token-level Supervision}, |
|
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
month = {June}, |
|
year = {2024}, |
|
pages = {8553-8564} |
|
} |
|
``` |