metadata
base_model: HPAI-BSC/Llama3.1-Aloe-Beta-8B
datasets:
- HPAI-BSC/Aloe-Beta-General-Collection
- HPAI-BSC/chain-of-diagnosis
- HPAI-BSC/MedS-Ins
- HPAI-BSC/ultramedical
- HPAI-BSC/pubmedqa-cot-llama31
- HPAI-BSC/medqa-cot-llama31
- HPAI-BSC/medmcqa-cot-llama31
- HPAI-BSC/headqa-cot-llama31
- HPAI-BSC/MMLU-medical-cot-llama31
- HPAI-BSC/Polymed-QA
- HPAI-BSC/Aloe-Beta-General-Collection
- HPAI-BSC/Aloe-Beta-General-Collection
language:
- en
library_name: transformers
license: llama3.1
pipeline_tag: question-answering
tags:
- biology
- medical
- healthcare
- mlx
mlx-community/Llama3.1-Aloe-Beta-8B
The Model mlx-community/Llama3.1-Aloe-Beta-8B was converted to MLX format from HPAI-BSC/Llama3.1-Aloe-Beta-8B using mlx-lm version 0.20.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama3.1-Aloe-Beta-8B")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)