agiin-13.6B-v0.1 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
4159656 verified
|
raw
history blame
4.87 kB
---
language:
- en
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: agiin-13.6B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.15
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.97
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.47
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mncai/agiin-13.6B-v0.1
name: Open LLM Leaderboard
---
# Model Card for mncai/agiin-13.6B-v0.1
### Introduction of MindsAndCompany
https://mnc.ai/
We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence).
### Model Summary
This model was built based on the Mistral architecture. It was inspired by neural connection technology and rehabilitation therapy.
I have created a new model architecture that does not require pretraining, and training the model is sufficient with just one H100 for 7 hours.
### Data
Intel/orca_dpo_pairs (DPO)
### Surgery and Training
stack mistral 62 layers and DPO.
### How to Use
```python
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "๋‘ ๊ฐœ์˜ ๊ตฌ๊ฐ€ ๊ฐ๊ฐ ์ง€๋ฆ„์ด 1, 2์ผ๋•Œ ๋‘ ๊ตฌ์˜ ๋ถ€ํ”ผ๋Š” ๋ช‡๋ฐฐ์ง€? ์„ค๋ช…๋„ ๊ฐ™์ด ํ•ด์ค˜."}
]
tokenizer = AutoTokenizer.from_pretrained(hf_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
pipeline = transformers.pipeline(
"text-generation",
model=hf_model,
tokenizer=tokenizer
)
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=512,
)
print(sequences[0]['generated_text'])
```
### Contact
If you have any questions, please raise an issue or contact us at [email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mncai__agiin-13.6B-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.40|
|AI2 Reasoning Challenge (25-Shot)|69.45|
|HellaSwag (10-Shot) |86.64|
|MMLU (5-Shot) |61.15|
|TruthfulQA (0-shot) |67.97|
|Winogrande (5-shot) |78.69|
|GSM8k (5-shot) |46.47|