katielink's picture
update the workflow figure
64977bc
|
raw
history blame
6.72 kB
metadata
tags:
  - monai
  - medical
library_name: monai
license: apache-2.0

Model Overview

A pre-trained model for simultaneous segmentation and classification of nuclei within multi-tissue histology images based on CoNSeP data. The details of the model can be found in [1].

Workflow

The model is trained to simultaneous segment and classify nuclei. Training is done via a two-stage approach. First initialized the model with pre-trained weights on the ImageNet dataset, trained only the decoders for the first 50 epochs, and then fine-tuned all layers for another 50 epochs. There are two training modes in total. If "original" mode is specified, it uses [270, 270] and [80, 80] for patch_size and out_size respectively. If "fast" mode is specified, it uses [256, 256] and [164, 164] for patch_size and out_size respectively. The results we show below are based on the "fast" model.

  • We train the first stage with pre-trained weights from some internal data.

  • The original author's repo also has pre-trained weights which is for non-commercial use. Each user is responsible for checking the content of models/datasets and the applicable licenses and determining if suitable for the intended use. The license for the pre-trained model is different than MONAI license. Please check the source where these weights are obtained from: https://github.com/vqdang/hover_net#data-format

PRETRAIN_MODEL_URL is "https://drive.google.com/u/1/uc?id=1KntZge40tAHgyXmHYVqZZ5d2p_4Qr2l5&export=download" which can be used in bash code below.

Model workflow

Data

The training data is from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/.

  • Target: segment instance-level nuclei and classify the nuclei type
  • Task: Segmentation and classification
  • Modality: RGB images
  • Size: 41 image tiles (2009 patches)

The provided labelled data was partitioned, based on the original split, into training (27 tiles) and testing (14 tiles) datasets.

After download the datasets, please run scripts/prepare_patches.py to prepare patches from tiles. Prepared patches are saved in your-concep-dataset-path/Prepared. The implementation is referring to https://github.com/vqdang/hover_net/blob/master/extract_patches.py. The command is like:

python scripts/prepare_patches.py -root your-concep-dataset-path

Training configuration

This model utilized a two-stage approach. The training was performed with the following:

  • GPU: At least 24GB of GPU memory.
  • Actual Model Input: 256 x 256
  • AMP: True
  • Optimizer: Adam
  • Learning Rate: 1e-4
  • Loss: HoVerNetLoss

Input

Input: RGB images

Output

Output: a dictionary with the following keys:

  1. nucleus_prediction: predict whether or not a pixel belongs to the nuclei or background
  2. horizontal_vertical: predict the horizontal and vertical distances of nuclear pixels to their centres of mass
  3. type_prediction: predict the type of nucleus for each pixel

Model Performance

The achieved metrics on the validation data are:

Fast mode:

  • Binary Dice: 0.8293
  • PQ: 0.4936
  • F1d: 0.7480

Training Loss and Dice

stage1: A graph showing the training loss and the mean dice over 50 epochs in stage1

stage2: A graph showing the training loss and the mean dice over 50 epochs in stage2

Validation Dice

stage1:

A graph showing the validation mean dice over 50 epochs in stage1

stage2:

A graph showing the validation mean dice over 50 epochs in stage2

commands example

Execute training:

  • Run first stage
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf --network_def#pretrained_url `PRETRAIN_MODEL_URL` --stage 0
  • Run second stage
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf --network_def#freeze_encoder false --network_def#pretrained_url None --stage 1

Override the train config to execute multi-GPU training:

  • Run first stage
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf --train#dataloader#batch_size 8 --network_def#freeze_encoder true --network_def#pretrained_url `PRETRAIN_MODEL_URL` --stage 0
  • Run second stage
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf --train#dataloader#batch_size 4 --network_def#freeze_encoder false --network_def#pretrained_url None --stage 1

Override the train config to execute evaluation with the trained model:

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf

Execute inference

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf

Disclaimer

This is an example, not to be used for diagnostic purposes.

References

[1] Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha Azam, Yee Wah Tsang, Jin Tae Kwak, Nasir Rajpoot, Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images, Medical Image Analysis, 2019 https://doi.org/10.1016/j.media.2019.101563

License

Copyright (c) MONAI Consortium

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.