|
--- |
|
library_name: peft |
|
tags: |
|
- code |
|
- instruct |
|
- code-llama |
|
datasets: |
|
- ehartford/dolphin-2.5-mixtral-8x7b |
|
base_model: codellama/CodeLlama-7b-hf |
|
license: apache-2.0 |
|
--- |
|
|
|
### Finetuning Overview: |
|
|
|
**Model Used:** codellama/CodeLlama-7b-hf |
|
|
|
**Dataset:** ehartford/dolphin-2.5-mixtral-8x7b |
|
|
|
#### Dataset Insights: |
|
|
|
[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. |
|
|
|
#### Finetuning Details: |
|
|
|
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning: |
|
|
|
- Was achieved with great cost-effectiveness. |
|
- Completed in a total duration of 1h 15m 3s for 2 epochs using an A6000 48GB GPU. |
|
- Costed `$2.525` for the entire 2 epochs. |
|
|
|
#### Hyperparameters & Additional Details: |
|
|
|
- **Epochs:** 2 |
|
- **Cost Per Epoch:** $1.26 |
|
- **Total Finetuning Cost:** $2.525 |
|
- **Model Path:** codellama/CodeLlama-7b-hf |
|
- **Learning Rate:** 0.0002 |
|
- **Data Split:** 100% train |
|
- **Gradient Accumulation Steps:** 64 |
|
- **lora r:** 64 |
|
- **lora alpha:** 16 |
|
|
|
--- |
|
license: apache-2.0 |