moreover18's picture
End of training
95f16d1
metadata
license: apache-2.0
base_model: moreover18/vit-base-patch16-224-in21k-finetuned-eurosat
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-eurosat-finetuned2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9261264129915618

vit-base-patch16-224-in21k-finetuned-eurosat-finetuned2

This model is a fine-tuned version of moreover18/vit-base-patch16-224-in21k-finetuned-eurosat on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1868
  • Accuracy: 0.9261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2258 0.25 100 0.2074 0.9155
0.2291 0.51 200 0.2039 0.9132
0.212 0.76 300 0.1969 0.9147
0.2126 1.02 400 0.2026 0.9163
0.1822 1.27 500 0.1952 0.9175
0.1716 1.53 600 0.1892 0.9225
0.1847 1.78 700 0.1823 0.9261
0.1693 2.04 800 0.1879 0.9239
0.1438 2.29 900 0.1962 0.9206
0.1431 2.55 1000 0.1868 0.9261
0.1419 2.8 1100 0.1871 0.9252

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.15.0