|
--- |
|
license: apache-2.0 |
|
base_model: moreover18/vit-base-patch16-224-in21k-finetuned-eurosat |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-patch16-224-in21k-finetuned-eurosat-finetuned2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9261264129915618 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-in21k-finetuned-eurosat-finetuned2 |
|
|
|
This model is a fine-tuned version of [moreover18/vit-base-patch16-224-in21k-finetuned-eurosat](https://huggingface.co/moreover18/vit-base-patch16-224-in21k-finetuned-eurosat) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1868 |
|
- Accuracy: 0.9261 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.2258 | 0.25 | 100 | 0.2074 | 0.9155 | |
|
| 0.2291 | 0.51 | 200 | 0.2039 | 0.9132 | |
|
| 0.212 | 0.76 | 300 | 0.1969 | 0.9147 | |
|
| 0.2126 | 1.02 | 400 | 0.2026 | 0.9163 | |
|
| 0.1822 | 1.27 | 500 | 0.1952 | 0.9175 | |
|
| 0.1716 | 1.53 | 600 | 0.1892 | 0.9225 | |
|
| 0.1847 | 1.78 | 700 | 0.1823 | 0.9261 | |
|
| 0.1693 | 2.04 | 800 | 0.1879 | 0.9239 | |
|
| 0.1438 | 2.29 | 900 | 0.1962 | 0.9206 | |
|
| 0.1431 | 2.55 | 1000 | 0.1868 | 0.9261 | |
|
| 0.1419 | 2.8 | 1100 | 0.1871 | 0.9252 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.15.0 |
|
|