mp-02's picture
mp-02/layoutlmv3-finetuned-funsd2
1cd02cf verified
|
raw
history blame
2.62 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-funsd2
    results: []

layoutlmv3-finetuned-funsd2

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6633
  • Precision: 0.9027
  • Recall: 0.9090
  • F1: 0.9058
  • Accuracy: 0.8500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 14
  • eval_batch_size: 14
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 120

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9091 10 0.9825 0.5685 0.6133 0.5901 0.6804
No log 1.8182 20 0.6492 0.7647 0.8215 0.7921 0.7781
No log 2.7273 30 0.5079 0.8037 0.8635 0.8326 0.8370
No log 3.6364 40 0.5371 0.8600 0.8924 0.8759 0.8428
No log 4.5455 50 0.5696 0.8753 0.8968 0.8859 0.8348
No log 5.4545 60 0.6309 0.8733 0.8863 0.8797 0.8272
No log 6.3636 70 0.6272 0.8878 0.9003 0.8940 0.8494
No log 7.2727 80 0.6168 0.9025 0.9151 0.9088 0.8688
No log 8.1818 90 0.6458 0.9094 0.9134 0.9114 0.8588
No log 9.0909 100 0.6830 0.8985 0.9064 0.9024 0.8490
No log 10.0 110 0.6325 0.9086 0.9221 0.9153 0.8502
No log 10.9091 120 0.6633 0.9027 0.9090 0.9058 0.8500

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1