|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-funsd2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-funsd2 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6633 |
|
- Precision: 0.9027 |
|
- Recall: 0.9090 |
|
- F1: 0.9058 |
|
- Accuracy: 0.8500 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 14 |
|
- eval_batch_size: 14 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 120 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9091 | 10 | 0.9825 | 0.5685 | 0.6133 | 0.5901 | 0.6804 | |
|
| No log | 1.8182 | 20 | 0.6492 | 0.7647 | 0.8215 | 0.7921 | 0.7781 | |
|
| No log | 2.7273 | 30 | 0.5079 | 0.8037 | 0.8635 | 0.8326 | 0.8370 | |
|
| No log | 3.6364 | 40 | 0.5371 | 0.8600 | 0.8924 | 0.8759 | 0.8428 | |
|
| No log | 4.5455 | 50 | 0.5696 | 0.8753 | 0.8968 | 0.8859 | 0.8348 | |
|
| No log | 5.4545 | 60 | 0.6309 | 0.8733 | 0.8863 | 0.8797 | 0.8272 | |
|
| No log | 6.3636 | 70 | 0.6272 | 0.8878 | 0.9003 | 0.8940 | 0.8494 | |
|
| No log | 7.2727 | 80 | 0.6168 | 0.9025 | 0.9151 | 0.9088 | 0.8688 | |
|
| No log | 8.1818 | 90 | 0.6458 | 0.9094 | 0.9134 | 0.9114 | 0.8588 | |
|
| No log | 9.0909 | 100 | 0.6830 | 0.8985 | 0.9064 | 0.9024 | 0.8490 | |
|
| No log | 10.0 | 110 | 0.6325 | 0.9086 | 0.9221 | 0.9153 | 0.8502 | |
|
| No log | 10.9091 | 120 | 0.6633 | 0.9027 | 0.9090 | 0.9058 | 0.8500 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|