|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mp-02/funsd |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-funsd |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: mp-02/funsd |
|
type: mp-02/funsd |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.875725338491296 |
|
- name: Recall |
|
type: recall |
|
value: 0.9055 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8903638151425762 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.843706936150666 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-funsd |
|
|
|
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6187 |
|
- Precision: 0.8757 |
|
- Recall: 0.9055 |
|
- F1: 0.8904 |
|
- Accuracy: 0.8437 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.32 | 50 | 0.9063 | 0.7006 | 0.757 | 0.7277 | 0.7607 | |
|
| No log | 2.63 | 100 | 0.6387 | 0.7930 | 0.858 | 0.8242 | 0.7967 | |
|
| No log | 3.95 | 150 | 0.5691 | 0.8171 | 0.8825 | 0.8486 | 0.8254 | |
|
| No log | 5.26 | 200 | 0.5723 | 0.8315 | 0.881 | 0.8555 | 0.8223 | |
|
| No log | 6.58 | 250 | 0.5897 | 0.8475 | 0.9 | 0.8729 | 0.8292 | |
|
| No log | 7.89 | 300 | 0.6122 | 0.8482 | 0.9025 | 0.8745 | 0.8283 | |
|
| No log | 9.21 | 350 | 0.6045 | 0.8505 | 0.899 | 0.8741 | 0.8392 | |
|
| No log | 10.53 | 400 | 0.5662 | 0.8708 | 0.9 | 0.8852 | 0.8446 | |
|
| No log | 11.84 | 450 | 0.5973 | 0.8739 | 0.9045 | 0.8889 | 0.8437 | |
|
| 0.4305 | 13.16 | 500 | 0.6187 | 0.8757 | 0.9055 | 0.8904 | 0.8437 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.5 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.13.2 |
|
- Tokenizers 0.10.1 |
|
|