metadata
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: >-
fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-with-freeze-LR-1e-05
results: []
fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-with-freeze-LR-1e-05
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2003
- Exact Match: 60.2113
- F1: 73.9948
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
---|---|---|---|---|---|
6.2316 | 0.5 | 19 | 3.5321 | 11.9718 | 21.8197 |
6.2316 | 0.99 | 38 | 2.6566 | 19.1901 | 31.9985 |
3.5132 | 1.5 | 57 | 2.1442 | 27.2887 | 40.7031 |
3.5132 | 1.99 | 76 | 1.6755 | 41.5493 | 53.9850 |
3.5132 | 2.5 | 95 | 1.4228 | 48.2394 | 61.2829 |
1.845 | 2.99 | 114 | 1.2882 | 52.8169 | 66.2197 |
1.845 | 3.5 | 133 | 1.2352 | 54.7535 | 68.3725 |
1.2542 | 3.99 | 152 | 1.2033 | 56.6901 | 70.5019 |
1.2542 | 4.5 | 171 | 1.2117 | 57.9225 | 72.0740 |
1.2542 | 4.99 | 190 | 1.1748 | 58.4507 | 71.9264 |
0.9877 | 5.5 | 209 | 1.1763 | 58.8028 | 72.2772 |
0.9877 | 5.99 | 228 | 1.1827 | 59.5070 | 73.5652 |
0.9877 | 6.5 | 247 | 1.1789 | 59.8592 | 73.2748 |
0.8293 | 6.99 | 266 | 1.1835 | 60.0352 | 73.4695 |
0.8293 | 7.5 | 285 | 1.1669 | 59.8592 | 73.7145 |
0.7663 | 7.99 | 304 | 1.1912 | 60.3873 | 74.3001 |
0.7663 | 8.5 | 323 | 1.1828 | 60.2113 | 74.1533 |
0.7663 | 8.99 | 342 | 1.2046 | 60.3873 | 74.0424 |
0.7068 | 9.5 | 361 | 1.2003 | 60.2113 | 73.9948 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2