|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
Extract POS Receipt Image Data To JSON Record |
|
|
|
## Model Details |
|
Finetuned Google's PaliGemma Model for Receipt Image extraction to JSON Record. |
|
|
|
gradio demo app: |
|
https://github.com/minyang-chen/paligemma-receipt-json-v2 |
|
|
|
|
|
### Model Usage |
|
|
|
Setup Environment |
|
``` |
|
pip install transformers==4.42.2 |
|
pip install datasets |
|
pip install peft accelerate bitsandbytes |
|
|
|
``` |
|
Specify Device |
|
``` |
|
import torch |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
device_map={"":0} |
|
``` |
|
|
|
Step-1 Load Image Processor |
|
``` |
|
from transformers import AutoProcessor |
|
|
|
FINETUNED_MODEL_ID = "mychen76/paligemma-receipt-json-3b-mix-448-v2b" |
|
processor = AutoProcessor.from_pretrained(FINETUNED_MODEL_ID) |
|
``` |
|
Step-2 Set Task Prompt |
|
``` |
|
TASK_PROMPT = "EXTRACT_JSON_RECEIPT" |
|
MAX_LENGTH = 512 |
|
|
|
inputs = processor(text=TASK_PROMPT, images=test_image, return_tensors="pt").to(device) |
|
for k,v in inputs.items(): |
|
print(k,v.shape) |
|
``` |
|
Step-3 load model |
|
``` |
|
import torch |
|
from transformers import PaliGemmaForConditionalGeneration |
|
from transformers import BitsAndBytesConfig |
|
from transformers import BitsAndBytesConfig |
|
from peft import get_peft_model, LoraConfig |
|
|
|
# Load Full model |
|
model = PaliGemmaForConditionalGeneration.from_pretrained(FINETUNED_MODEL_ID,device_map={"":0}) |
|
``` |
|
OR Load Quantized |
|
``` |
|
# Q-LoRa |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_type=torch.bfloat16 |
|
) |
|
lora_config = LoraConfig( |
|
r=8, |
|
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], |
|
task_type="CAUSAL_LM" |
|
) |
|
model = PaliGemmaForConditionalGeneration.from_pretrained(FINETUNED_MODEL_ID, quantization_config=bnb_config, device_map={"":0}) |
|
``` |
|
Step-4 Inference |
|
``` |
|
# Autoregressively generate,use greedy decoding here, for more fancy methods see https://huggingface.co/blog/how-to-generate |
|
generated_ids = model.generate(**inputs, max_new_tokens=MAX_LENGTH) |
|
|
|
# Next turn each predicted token ID back into a string using the decode method |
|
# chop of the prompt, which consists of image tokens and text prompt |
|
image_token_index = model.config.image_token_index |
|
num_image_tokens = len(generated_ids[generated_ids==image_token_index]) |
|
num_text_tokens = len(processor.tokenizer.encode(PROMPT)) |
|
num_prompt_tokens = num_image_tokens + num_text_tokens + 2 |
|
generated_text = processor.batch_decode(generated_ids[:, num_prompt_tokens:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
print(generated_text) |
|
``` |
|
Result Tokens |
|
``` |
|
'<s_total></s_total><s_tips></s_tips><s_time></s_time><s_telephone>(718)308-1118</s_telephone><s_tax></s_tax><s_subtotal></s_subtotal><s_store_name></s_store_name><s_store_addr>Brooklyn,NY11211</s_store_addr><s_line_items><s_item_value>2.98</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>NORI</s_item_name><s_item_key></s_item_key><sep/><s_item_value>2.35</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>TOMATOESPLUM</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.97</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>ONIONSVIDALIA</s_item_name><s_item_key></s_item_key><sep/><s_item_value>2.48</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>HAMBURRN</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.99</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>FTRAWBERRY</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.99</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>FTRAWBERRY</s_item_name><s_item_key></s_item_key><sep/><s_item_value>0.57</s_item_value><s_item_quantity>1</s_item_quantity><s_item_name>PILSNER</' |
|
``` |
|
Step-5 Convert Result to Json (borrow from donut model) |
|
``` |
|
import re |
|
|
|
# let's turn that into JSON |
|
def token2json(tokens, is_inner_value=False, added_vocab=None): |
|
""" |
|
Convert a (generated) token sequence into an ordered JSON format. |
|
""" |
|
if added_vocab is None: |
|
added_vocab = processor.tokenizer.get_added_vocab() |
|
|
|
output = {} |
|
|
|
while tokens: |
|
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE) |
|
if start_token is None: |
|
break |
|
key = start_token.group(1) |
|
key_escaped = re.escape(key) |
|
|
|
end_token = re.search(rf"</s_{key_escaped}>", tokens, re.IGNORECASE) |
|
start_token = start_token.group() |
|
if end_token is None: |
|
tokens = tokens.replace(start_token, "") |
|
else: |
|
end_token = end_token.group() |
|
start_token_escaped = re.escape(start_token) |
|
end_token_escaped = re.escape(end_token) |
|
content = re.search( |
|
f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE | re.DOTALL |
|
) |
|
if content is not None: |
|
content = content.group(1).strip() |
|
if r"<s_" in content and r"</s_" in content: # non-leaf node |
|
value = token2json(content, is_inner_value=True, added_vocab=added_vocab) |
|
if value: |
|
if len(value) == 1: |
|
value = value[0] |
|
output[key] = value |
|
else: # leaf nodes |
|
output[key] = [] |
|
for leaf in content.split(r"<sep/>"): |
|
leaf = leaf.strip() |
|
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": |
|
leaf = leaf[1:-2] # for categorical special tokens |
|
output[key].append(leaf) |
|
if len(output[key]) == 1: |
|
output[key] = output[key][0] |
|
|
|
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip() |
|
if tokens[:6] == r"<sep/>": # non-leaf nodes |
|
return [output] + token2json(tokens[6:], is_inner_value=True, added_vocab=added_vocab) |
|
|
|
if len(output): |
|
return [output] if is_inner_value else output |
|
else: |
|
return [] if is_inner_value else {"text_sequence": tokens} |
|
|
|
|
|
## generated |
|
generated_json = token2json(generated_text) |
|
print(generated_json) |
|
``` |
|
Final Result in Json |
|
``` |
|
[{'total': '', |
|
'tips': '', |
|
'time': '', |
|
'telephone': '(718)308-1118', |
|
'tax': '', |
|
'subtotal': '', |
|
'store_name': '', |
|
'store_addr': 'Brooklyn,NY11211', |
|
'item_value': '2.98', |
|
'item_quantity': '1', |
|
'item_name': 'NORI', |
|
'item_key': ''}, |
|
{'item_value': '2.35', |
|
'item_quantity': '1', |
|
'item_name': 'TOMATOESPLUM', |
|
'item_key': ''}, |
|
{'item_value': '0.97', |
|
'item_quantity': '1', |
|
'item_name': 'ONIONSVIDALIA', |
|
'item_key': ''}, |
|
{'item_value': '2.48', |
|
'item_quantity': '1', |
|
'item_name': 'HAMBURRN', |
|
'item_key': ''}, |
|
{'item_value': '0.99', |
|
'item_quantity': '1', |
|
'item_name': 'FTRAWBERRY', |
|
'item_key': ''}, |
|
{'item_value': '0.99', |
|
'item_quantity': '1', |
|
'item_name': 'FTRAWBERRY', |
|
'item_key': ''}, |
|
{'item_value': '0.57', 'item_quantity': '1'}] |
|
``` |
|
|
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** [email protected] |
|
- **Model type:** Vision Model for Receipt Image Data Extraction |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** PaliGemma-3b-pt-224 |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
see here: mychen76/invoices-and-receipts_ocr_v1 |
|
|
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |