n3wtou's picture
Update README.md
5862801
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: n3wtou/mt5-small-finedtuned-4-swahili
    results: []
datasets:
  - csebuetnlp/xlsum
language:
  - sw
metrics:
  - f1
  - rouge

n3wtou/mt5-small-finedtuned-4-swahili

This model is a fine-tuned version of google/mt5-small on csebuetnlp/xlsum dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.4419
  • Validation Loss: 2.4809
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0003, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0003, 'decay_steps': 19900, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 100, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
5.6636 2.9818 0
3.7789 2.7822 1
3.3841 2.6840 2
3.1496 2.6238 3
2.9656 2.5816 4
2.8134 2.5522 5
2.6914 2.5315 6
2.5935 2.4980 7
2.5056 2.4764 8
2.4419 2.4809 9

Framework versions

  • Transformers 4.30.2
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3