mt5-swatf / README.md
n3wtou's picture
update model card README.md
1ce4bf5
|
raw
history blame
2.92 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: mt5-swatf
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          config: swahili
          split: validation
          args: swahili
        metrics:
          - name: Rouge1
            type: rouge
            value: 9.7053

mt5-swatf

This model is a fine-tuned version of google/mt5-small on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Rouge1: 9.7053
  • Rouge2: 1.3021
  • Rougel: 8.4306
  • Rougelsum: 8.4159
  • Gen Len: 683.08

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.0 0.8 500 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 1.6 1000 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 2.4 1500 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 3.2 2000 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 4.0 2500 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 4.8 3000 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 5.6 3500 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 6.4 4000 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 7.2 4500 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 8.0 5000 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 8.8 5500 nan 9.7053 1.3021 8.4306 8.4159 683.08
0.0 9.6 6000 nan 9.7053 1.3021 8.4306 8.4159 683.08

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3