File size: 1,923 Bytes
55c9c80 ea19651 55c9c80 ea19651 6bfbba0 61c5744 6bfbba0 ea19651 0dec916 ea19651 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
- image-to-3d
library_name: dust3r
repo_url: https://github.com/naver/dust3r
---
## DUSt3R: Geometric 3D Vision Made Easy
```bibtex
@inproceedings{dust3r_cvpr24,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
booktitle = {CVPR},
year = {2024}
}
@misc{dust3r_arxiv23,
title={DUSt3R: Geometric 3D Vision Made Easy},
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
year={2023},
eprint={2312.14132},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2312.14132},
}
```
# License
The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/dust3r/blob/main/LICENSE) for more information.
For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See [section: Our Hyperparameters](https://github.com/naver/dust3r?tab=readme-ov-file#our-hyperparameters) for details.
# Model info
Gihub page: https://github.com/naver/dust3r/
Project page: https://dust3r.europe.naverlabs.com/
| Modelname | Training resolutions | Head | Encoder | Decoder |
|-------------|----------------------|------|---------|---------|
| DUSt3R_ViTLarge_BaseDecoder_512_dpt | 512x384, 512x336, 512x288, 512x256, 512x160 | DPT | ViT-L | ViT-B |
# How to use
First, [install dust3r](https://github.com/naver/dust3r?tab=readme-ov-file#installation).
To load the model:
```python
from dust3r.model import AsymmetricCroCo3DStereo
import torch
model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
``` |