|
--- |
|
tags: |
|
- pytorch_model_hub_mixin |
|
- model_hub_mixin |
|
- image-to-3d |
|
library_name: dust3r |
|
repo_url: https://github.com/naver/dust3r |
|
--- |
|
|
|
## DUSt3R: Geometric 3D Vision Made Easy |
|
|
|
```bibtex |
|
@misc{wang2023dust3rgeometric3dvision, |
|
title={DUSt3R: Geometric 3D Vision Made Easy}, |
|
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud}, |
|
year={2023}, |
|
eprint={2312.14132}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2312.14132}, |
|
} |
|
``` |
|
|
|
# License |
|
The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/dust3r/blob/main/LICENSE) for more information. |
|
For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See [section: Our Hyperparameters](https://github.com/naver/dust3r?tab=readme-ov-file#our-hyperparameters) for details. |
|
|
|
# Model info |
|
|
|
Gihub page: https://github.com/naver/dust3r/ |
|
Project page: https://dust3r.europe.naverlabs.com/ |
|
|
|
| Modelname | Training resolutions | Head | Encoder | Decoder | |
|
|-------------|----------------------|------|---------|---------| |
|
| DUSt3R_ViTLarge_BaseDecoder_512_dpt | 512x384, 512x336, 512x288, 512x256, 512x160 | DPT | ViT-L | ViT-B | |
|
|
|
# How to use |
|
|
|
First, [install dust3r](https://github.com/naver/dust3r?tab=readme-ov-file#installation). |
|
To load the model: |
|
|
|
```python |
|
from dust3r.model import AsymmetricCroCo3DStereo |
|
import torch |
|
|
|
model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
``` |