|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv2-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv2-document-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv2-document-classifier |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0008 |
|
- Accuracy: 1.0 |
|
|
|
## Dataset Infomation |
|
|
|
This model was fine-tuned to classify some company documents. |
|
|
|
Dataset used: [Company Documents Dataset](https://www.kaggle.com/datasets/navodpeiris/company-documents-dataset) |
|
|
|
## Dependencies |
|
|
|
``` |
|
pip install PyMuPDF |
|
pip install transformers |
|
pip install torch |
|
pip install torchvision |
|
pip install pytesseract |
|
``` |
|
|
|
- setup tesseract locally in your machine follow steps here: [install instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html) |
|
|
|
## Model Usage |
|
|
|
use a file in this dataset to test: https://www.kaggle.com/datasets/navodpeiris/company-documents-dataset |
|
|
|
``` |
|
import os |
|
from PIL import Image |
|
from transformers import LayoutLMv2Processor, LayoutLMv2ForSequenceClassification |
|
import fitz |
|
import io |
|
|
|
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") |
|
model = LayoutLMv2ForSequenceClassification.from_pretrained("navodPeiris/layoutlmv2-document-classifier") |
|
|
|
DATA_FOLDER = "data" |
|
filename = "invoice.pdf" |
|
|
|
file_location = os.path.join(DATA_FOLDER, filename) |
|
doc = fitz.open(file_location) |
|
|
|
page = doc.load_page(0) |
|
pix = page.get_pixmap(dpi=200) |
|
|
|
# Convert Pixmap to bytes |
|
img_bytes = pix.tobytes("png") |
|
|
|
# Load into PIL.Image |
|
image = Image.open(io.BytesIO(img_bytes)).convert("RGB") |
|
doc.close() |
|
|
|
encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512) |
|
|
|
outputs = model(**encoding) |
|
logits = outputs.logits |
|
|
|
predicted_class_id = logits.argmax(dim=1).item() |
|
classified_output = model.config.id2label[predicted_class_id] |
|
|
|
print(f"Predicted class: {classified_output}") |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.7722 | 0.0970 | 26 | 0.2249 | 0.9216 | |
|
| 0.0828 | 0.1940 | 52 | 0.0452 | 0.9907 | |
|
| 0.026 | 0.2910 | 78 | 0.0459 | 0.9907 | |
|
| 0.0265 | 0.3881 | 104 | 0.0267 | 0.9907 | |
|
| 0.0263 | 0.4851 | 130 | 0.0068 | 1.0 | |
|
| 0.008 | 0.5821 | 156 | 0.0026 | 1.0 | |
|
| 0.0023 | 0.6791 | 182 | 0.0014 | 1.0 | |
|
| 0.0014 | 0.7761 | 208 | 0.0009 | 1.0 | |
|
| 0.0011 | 0.8731 | 234 | 0.0008 | 1.0 | |
|
| 0.0012 | 0.9701 | 260 | 0.0008 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|