nc33's picture
End of training
d533c00 verified
|
raw
history blame
2.44 kB
metadata
base_model: FPTAI/vibert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: vibert-base-cased-ed
    results: []

vibert-base-cased-ed

This model is a fine-tuned version of FPTAI/vibert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0595
  • F1 Micro: 0.7034
  • F1 Macro: 0.0430
  • Accuracy: 0.6374
  • Recall Micro: 0.6094
  • Precision Micro: 0.8317
  • Recall Macro: 0.0392
  • Precision Macro: 0.0621
  • F1: 0.5913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy Recall Micro Precision Micro Recall Macro Precision Macro F1
0.0696 1.0 1526 0.0711 0.6892 0.0243 0.7054 0.6737 0.7054 0.0294 0.0207 0.5573
0.055 2.0 3052 0.0622 0.6965 0.0252 0.6345 0.6060 0.8187 0.0265 0.0241 0.5775
0.0631 3.0 4578 0.0598 0.7054 0.0255 0.6436 0.6147 0.8274 0.0268 0.0243 0.5847
0.0534 4.0 6104 0.0591 0.6980 0.0260 0.6268 0.5989 0.8362 0.0265 0.0540 0.5809
0.0296 5.0 7630 0.0595 0.7034 0.0430 0.6374 0.6094 0.8317 0.0392 0.0621 0.5913

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1