|
--- |
|
base_model: FPTAI/vibert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: vibert-base-cased-ed |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vibert-base-cased-ed |
|
|
|
This model is a fine-tuned version of [FPTAI/vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0595 |
|
- F1 Micro: 0.7034 |
|
- F1 Macro: 0.0430 |
|
- Accuracy: 0.6374 |
|
- Recall Micro: 0.6094 |
|
- Precision Micro: 0.8317 |
|
- Recall Macro: 0.0392 |
|
- Precision Macro: 0.0621 |
|
- F1: 0.5913 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Recall Micro | Precision Micro | Recall Macro | Precision Macro | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:------------:|:---------------:|:------------:|:---------------:|:------:| |
|
| 0.0696 | 1.0 | 1526 | 0.0711 | 0.6892 | 0.0243 | 0.7054 | 0.6737 | 0.7054 | 0.0294 | 0.0207 | 0.5573 | |
|
| 0.055 | 2.0 | 3052 | 0.0622 | 0.6965 | 0.0252 | 0.6345 | 0.6060 | 0.8187 | 0.0265 | 0.0241 | 0.5775 | |
|
| 0.0631 | 3.0 | 4578 | 0.0598 | 0.7054 | 0.0255 | 0.6436 | 0.6147 | 0.8274 | 0.0268 | 0.0243 | 0.5847 | |
|
| 0.0534 | 4.0 | 6104 | 0.0591 | 0.6980 | 0.0260 | 0.6268 | 0.5989 | 0.8362 | 0.0265 | 0.0540 | 0.5809 | |
|
| 0.0296 | 5.0 | 7630 | 0.0595 | 0.7034 | 0.0430 | 0.6374 | 0.6094 | 0.8317 | 0.0392 | 0.0621 | 0.5913 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|