Edit model card

frost-vision-v2-google_vit-base-patch16-224-v2024-11-14

This model is a fine-tuned version of google/vit-base-patch16-224 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1577
  • Accuracy: 0.9389
  • F1: 0.8436
  • Precision: 0.8655
  • Recall: 0.8228

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3381 1.2346 100 0.3271 0.8660 0.5669 0.8045 0.4376
0.2067 2.4691 200 0.2080 0.9194 0.7827 0.8514 0.7242
0.1745 3.7037 300 0.1864 0.9228 0.8003 0.8308 0.7720
0.1724 4.9383 400 0.1792 0.9299 0.8188 0.8493 0.7904
0.128 6.1728 500 0.1736 0.9327 0.8292 0.8437 0.8151
0.1034 7.4074 600 0.1672 0.9355 0.8348 0.8571 0.8136
0.0944 8.6420 700 0.1579 0.9392 0.8452 0.8622 0.8290
0.0919 9.8765 800 0.1631 0.9364 0.8347 0.8710 0.8012
0.0791 11.1111 900 0.1592 0.9380 0.8383 0.8771 0.8028
0.0684 12.3457 1000 0.1577 0.9389 0.8436 0.8655 0.8228
0.0737 13.5802 1100 0.1678 0.9380 0.8416 0.8613 0.8228
0.0625 14.8148 1200 0.1646 0.9426 0.8542 0.8692 0.8398
0.0591 16.0494 1300 0.1625 0.9432 0.8549 0.8756 0.8351
0.0464 17.2840 1400 0.1722 0.9386 0.8422 0.8676 0.8182
0.048 18.5185 1500 0.1694 0.9401 0.8472 0.8663 0.8290
0.0353 19.7531 1600 0.1715 0.9392 0.8462 0.8576 0.8351
0.0434 20.9877 1700 0.1817 0.9370 0.8386 0.8618 0.8166
0.0332 22.2222 1800 0.1797 0.9383 0.8423 0.8627 0.8228
0.0283 23.4568 1900 0.1810 0.9401 0.8482 0.8617 0.8351
0.0474 24.6914 2000 0.1765 0.9398 0.8454 0.8709 0.8213
0.0365 25.9259 2100 0.1835 0.9414 0.8516 0.8637 0.8398
0.0244 27.1605 2200 0.1822 0.9404 0.8479 0.8677 0.8290
0.0242 28.3951 2300 0.1808 0.9407 0.8483 0.8703 0.8274
0.0296 29.6296 2400 0.1817 0.9401 0.8477 0.864 0.8320

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nemik/frost-vision-v2-google_vit-base-patch16-224-v2024-11-14

Finetuned
(496)
this model

Evaluation results