nemik's picture
frostsolutions/frost-vision-v2-google_vit-base-patch16-224-v2024-11-14
70ae379 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - webdataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: frost-vision-v2-google_vit-base-patch16-224-v2024-11-14
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9388888888888889
          - name: F1
            type: f1
            value: 0.8436018957345972
          - name: Precision
            type: precision
            value: 0.8654781199351702
          - name: Recall
            type: recall
            value: 0.8228043143297381

frost-vision-v2-google_vit-base-patch16-224-v2024-11-14

This model is a fine-tuned version of google/vit-base-patch16-224 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1577
  • Accuracy: 0.9389
  • F1: 0.8436
  • Precision: 0.8655
  • Recall: 0.8228

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3381 1.2346 100 0.3271 0.8660 0.5669 0.8045 0.4376
0.2067 2.4691 200 0.2080 0.9194 0.7827 0.8514 0.7242
0.1745 3.7037 300 0.1864 0.9228 0.8003 0.8308 0.7720
0.1724 4.9383 400 0.1792 0.9299 0.8188 0.8493 0.7904
0.128 6.1728 500 0.1736 0.9327 0.8292 0.8437 0.8151
0.1034 7.4074 600 0.1672 0.9355 0.8348 0.8571 0.8136
0.0944 8.6420 700 0.1579 0.9392 0.8452 0.8622 0.8290
0.0919 9.8765 800 0.1631 0.9364 0.8347 0.8710 0.8012
0.0791 11.1111 900 0.1592 0.9380 0.8383 0.8771 0.8028
0.0684 12.3457 1000 0.1577 0.9389 0.8436 0.8655 0.8228
0.0737 13.5802 1100 0.1678 0.9380 0.8416 0.8613 0.8228
0.0625 14.8148 1200 0.1646 0.9426 0.8542 0.8692 0.8398
0.0591 16.0494 1300 0.1625 0.9432 0.8549 0.8756 0.8351
0.0464 17.2840 1400 0.1722 0.9386 0.8422 0.8676 0.8182
0.048 18.5185 1500 0.1694 0.9401 0.8472 0.8663 0.8290
0.0353 19.7531 1600 0.1715 0.9392 0.8462 0.8576 0.8351
0.0434 20.9877 1700 0.1817 0.9370 0.8386 0.8618 0.8166
0.0332 22.2222 1800 0.1797 0.9383 0.8423 0.8627 0.8228
0.0283 23.4568 1900 0.1810 0.9401 0.8482 0.8617 0.8351
0.0474 24.6914 2000 0.1765 0.9398 0.8454 0.8709 0.8213
0.0365 25.9259 2100 0.1835 0.9414 0.8516 0.8637 0.8398
0.0244 27.1605 2200 0.1822 0.9404 0.8479 0.8677 0.8290
0.0242 28.3951 2300 0.1808 0.9407 0.8483 0.8703 0.8274
0.0296 29.6296 2400 0.1817 0.9401 0.8477 0.864 0.8320

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3