metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9881889764
- name: NER Recall
type: recall
value: 0.9881889764
- name: NER F Score
type: f_score
value: 0.9881889764
This is a custom named entity recognition model for clinical data. Inorder to see the real usage of the model,
please enter clinical text in the text field.
Feature | Description |
---|---|
Name | en_pipeline |
Version | 0.0.0 |
spaCy | >=3.5.0,<3.6.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (3 labels for 1 components)
Component | Labels |
---|---|
ner |
MEDICALCONDITION , MEDICINE , PATHOGEN |
Accuracy
Type | Score |
---|---|
ENTS_F |
98.82 |
ENTS_P |
98.82 |
ENTS_R |
98.82 |
TOK2VEC_LOSS |
4597.80 |
NER_LOSS |
29304.32 |