en_pipeline / README.md
nepalprabin's picture
Update README.md
38c68c6
metadata
tags:
  - spacy
  - token-classification
language:
  - en
model-index:
  - name: en_pipeline
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.9881889764
          - name: NER Recall
            type: recall
            value: 0.9881889764
          - name: NER F Score
            type: f_score
            value: 0.9881889764

This is a custom named entity recognition model for clinical data. Inorder to see the real usage of the model,
please enter clinical text in the text field.

Feature Description
Name en_pipeline
Version 0.0.0
spaCy >=3.5.0,<3.6.0
Default Pipeline tok2vec, ner
Components tok2vec, ner
Vectors 514157 keys, 514157 unique vectors (300 dimensions)
Sources n/a
License n/a
Author n/a

Label Scheme

View label scheme (3 labels for 1 components)
Component Labels
ner MEDICALCONDITION, MEDICINE, PATHOGEN

Accuracy

Type Score
ENTS_F 98.82
ENTS_P 98.82
ENTS_R 98.82
TOK2VEC_LOSS 4597.80
NER_LOSS 29304.32