metadata
tags:
- mteb
model-index:
- name: bge-small-en-v1.5-quant
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.19402985074626
- type: ap
value: 37.562368912364036
- type: f1
value: 68.47046663470138
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.89432499999998
- type: ap
value: 88.64572979375352
- type: f1
value: 91.87171177424113
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 46.71799999999999
- type: f1
value: 46.25791412217894
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 34.424
- type: map_at_10
value: 49.63
- type: map_at_100
value: 50.477000000000004
- type: map_at_1000
value: 50.483
- type: map_at_3
value: 45.389
- type: map_at_5
value: 47.888999999999996
- type: mrr_at_1
value: 34.78
- type: mrr_at_10
value: 49.793
- type: mrr_at_100
value: 50.632999999999996
- type: mrr_at_1000
value: 50.638000000000005
- type: mrr_at_3
value: 45.531
- type: mrr_at_5
value: 48.010000000000005
- type: ndcg_at_1
value: 34.424
- type: ndcg_at_10
value: 57.774
- type: ndcg_at_100
value: 61.248000000000005
- type: ndcg_at_1000
value: 61.378
- type: ndcg_at_3
value: 49.067
- type: ndcg_at_5
value: 53.561
- type: precision_at_1
value: 34.424
- type: precision_at_10
value: 8.364
- type: precision_at_100
value: 0.985
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 19.915
- type: precision_at_5
value: 14.124999999999998
- type: recall_at_1
value: 34.424
- type: recall_at_10
value: 83.64200000000001
- type: recall_at_100
value: 98.506
- type: recall_at_1000
value: 99.502
- type: recall_at_3
value: 59.744
- type: recall_at_5
value: 70.626
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.40334669601722
- type: mrr
value: 75.33175042870333
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 88.00433892980047
- type: cos_sim_spearman
value: 86.65558896421105
- type: euclidean_pearson
value: 85.98927300398377
- type: euclidean_spearman
value: 86.0905158476729
- type: manhattan_pearson
value: 86.0272425017433
- type: manhattan_spearman
value: 85.8929209838941
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.1038961038961
- type: f1
value: 85.06851570045757
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 46.845
- type: f1
value: 41.70045120106269
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 89.3476
- type: ap
value: 85.26891728027032
- type: f1
value: 89.33488973832894
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.67441860465115
- type: f1
value: 92.48821366022861
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 74.02872777017784
- type: f1
value: 57.28822860484337
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.01479488903833
- type: f1
value: 71.83716204573571
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.95897780766644
- type: f1
value: 77.80380046125542
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.86793477948164
- type: cos_sim_spearman
value: 79.43675709317894
- type: euclidean_pearson
value: 81.42564463337872
- type: euclidean_spearman
value: 79.39138648510273
- type: manhattan_pearson
value: 81.31167449689285
- type: manhattan_spearman
value: 79.28411420758785
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.43490408077298
- type: cos_sim_spearman
value: 76.16878340109265
- type: euclidean_pearson
value: 80.6016219080782
- type: euclidean_spearman
value: 75.67063072565917
- type: manhattan_pearson
value: 80.7238920179759
- type: manhattan_spearman
value: 75.85631683403953
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 83.03882477767792
- type: cos_sim_spearman
value: 84.15171505206217
- type: euclidean_pearson
value: 84.11692506470922
- type: euclidean_spearman
value: 84.78589046217311
- type: manhattan_pearson
value: 83.98651139454486
- type: manhattan_spearman
value: 84.64928563751276
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.11158600428418
- type: cos_sim_spearman
value: 81.48561519933875
- type: euclidean_pearson
value: 83.21025907155807
- type: euclidean_spearman
value: 81.68699235487654
- type: manhattan_pearson
value: 83.16704771658094
- type: manhattan_spearman
value: 81.7133110412898
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.1514510686502
- type: cos_sim_spearman
value: 88.11449450494452
- type: euclidean_pearson
value: 87.75854949349939
- type: euclidean_spearman
value: 88.4055148221637
- type: manhattan_pearson
value: 87.71487828059706
- type: manhattan_spearman
value: 88.35301381116254
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.36838640113687
- type: cos_sim_spearman
value: 84.98776974283366
- type: euclidean_pearson
value: 84.0617526427129
- type: euclidean_spearman
value: 85.04234805662242
- type: manhattan_pearson
value: 83.87433162971784
- type: manhattan_spearman
value: 84.87174280390242
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.72465270691285
- type: cos_sim_spearman
value: 87.97672332532184
- type: euclidean_pearson
value: 88.78764701492182
- type: euclidean_spearman
value: 88.3509718074474
- type: manhattan_pearson
value: 88.73024739256215
- type: manhattan_spearman
value: 88.24149566970154
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.65195562203238
- type: cos_sim_spearman
value: 65.0726777678982
- type: euclidean_pearson
value: 65.84698245675273
- type: euclidean_spearman
value: 65.13121502162804
- type: manhattan_pearson
value: 65.96149904857049
- type: manhattan_spearman
value: 65.39983948112955
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.2642818050049
- type: cos_sim_spearman
value: 86.30633382439257
- type: euclidean_pearson
value: 86.46510435905633
- type: euclidean_spearman
value: 86.62650496446
- type: manhattan_pearson
value: 86.2546330637872
- type: manhattan_spearman
value: 86.46309860938591
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.84257425742574
- type: cos_sim_ap
value: 96.25445889914926
- type: cos_sim_f1
value: 92.03805708562844
- type: cos_sim_precision
value: 92.1765295887663
- type: cos_sim_recall
value: 91.9
- type: dot_accuracy
value: 99.83069306930693
- type: dot_ap
value: 96.00517778550396
- type: dot_f1
value: 91.27995920448751
- type: dot_precision
value: 93.1321540062435
- type: dot_recall
value: 89.5
- type: euclidean_accuracy
value: 99.84455445544555
- type: euclidean_ap
value: 96.14761524546034
- type: euclidean_f1
value: 91.97751660705163
- type: euclidean_precision
value: 94.04388714733543
- type: euclidean_recall
value: 90
- type: manhattan_accuracy
value: 99.84158415841584
- type: manhattan_ap
value: 96.17014673429341
- type: manhattan_f1
value: 91.93790686029043
- type: manhattan_precision
value: 92.07622868605817
- type: manhattan_recall
value: 91.8
- type: max_accuracy
value: 99.84455445544555
- type: max_ap
value: 96.25445889914926
- type: max_f1
value: 92.03805708562844
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.5008
- type: ap
value: 13.64158304183089
- type: f1
value: 53.50073331072236
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.01980758347483
- type: f1
value: 60.35679678249753
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.68874053764081
- type: cos_sim_ap
value: 73.26334732095694
- type: cos_sim_f1
value: 68.01558376272465
- type: cos_sim_precision
value: 64.93880489560834
- type: cos_sim_recall
value: 71.39841688654354
- type: dot_accuracy
value: 84.71121177802945
- type: dot_ap
value: 70.33606362522605
- type: dot_f1
value: 65.0887573964497
- type: dot_precision
value: 63.50401606425703
- type: dot_recall
value: 66.75461741424802
- type: euclidean_accuracy
value: 85.80795136198367
- type: euclidean_ap
value: 73.43201285001163
- type: euclidean_f1
value: 68.33166833166834
- type: euclidean_precision
value: 64.86486486486487
- type: euclidean_recall
value: 72.18997361477572
- type: manhattan_accuracy
value: 85.62317458425225
- type: manhattan_ap
value: 73.21212085536185
- type: manhattan_f1
value: 68.01681314482232
- type: manhattan_precision
value: 65.74735286875153
- type: manhattan_recall
value: 70.44854881266491
- type: max_accuracy
value: 85.80795136198367
- type: max_ap
value: 73.43201285001163
- type: max_f1
value: 68.33166833166834
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.81709162882757
- type: cos_sim_ap
value: 85.63540257309367
- type: cos_sim_f1
value: 77.9091382258904
- type: cos_sim_precision
value: 75.32710280373833
- type: cos_sim_recall
value: 80.67446874037573
- type: dot_accuracy
value: 88.04478596654636
- type: dot_ap
value: 84.16371725220706
- type: dot_f1
value: 76.45949643213666
- type: dot_precision
value: 73.54719396827655
- type: dot_recall
value: 79.61194949183862
- type: euclidean_accuracy
value: 88.9296386851399
- type: euclidean_ap
value: 85.71894615274715
- type: euclidean_f1
value: 78.12952767313823
- type: euclidean_precision
value: 73.7688098495212
- type: euclidean_recall
value: 83.03818909762857
- type: manhattan_accuracy
value: 88.89276982186519
- type: manhattan_ap
value: 85.6838514059479
- type: manhattan_f1
value: 78.06861875184856
- type: manhattan_precision
value: 75.09246088193457
- type: manhattan_recall
value: 81.29042192793348
- type: max_accuracy
value: 88.9296386851399
- type: max_ap
value: 85.71894615274715
- type: max_f1
value: 78.12952767313823
license: mit
language:
- en
license: mit
This is the quantized ONNX variant of the bge-small-en-v1.5 model for embeddings created with DeepSparse Optimum for ONNX export and Neural Magic's Sparsify for One-Shot INT8 quantization.