nirusanan's picture
Create README.md
315622d verified
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
base_model: meta-llama/Meta-Llama-3-8B
base_model_relation: finetune
---
# Model Information
The Llama-3-8B_SFT_Finetune_Pandas_Code is a quantized, fine-tuned version of the Meta-Llama-3 model designed specifically for analyzing tabular data.
# How to use
Starting with transformers version 4.34.0 and later, you can run conversational inference using the Transformers pipeline.
Make sure to update your transformers installation via pip install --upgrade transformers.
```python
import transformers
import torch
from peft import PeftModel, PeftConfig, get_peft_model
from transformers import pipeline
```
```python
def get_pipline():
model_name = "nirusanan/Llama-3-8B_SFT_Finetune_Pandas_Code"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cuda:0",
trust_remote_code=True
)
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=850)
return pipe
pipe = get_pipline()
```
```python
def generate_prompt(task, header_columns):
prompt = f"""Below is an instruction that describes a task. Write a Python function using Pandas to accomplish the task described below.
### Instruction:
{task}
header columns with sample data:
{header_columns}
### Response:
"""
return prompt
```
```python
prompt = generate_prompt("Your question based on tabular data", "Necessary columns names")
result = pipe(prompt)
generated_text = result[0]['generated_text']
print(generated_text.split("### End")[0])
```