|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
|
|
base_model: meta-llama/Meta-Llama-3-8B |
|
base_model_relation: finetune |
|
--- |
|
# Model Information |
|
The Llama-3-8B_SFT_Finetune_Pandas_Code is a quantized, fine-tuned version of the Meta-Llama-3 model designed specifically for analyzing tabular data. |
|
|
|
|
|
# How to use |
|
Starting with transformers version 4.34.0 and later, you can run conversational inference using the Transformers pipeline. |
|
|
|
Make sure to update your transformers installation via pip install --upgrade transformers. |
|
|
|
```python |
|
import transformers |
|
import torch |
|
from peft import PeftModel, PeftConfig, get_peft_model |
|
from transformers import pipeline |
|
``` |
|
|
|
```python |
|
def get_pipline(): |
|
model_name = "nirusanan/Llama-3-8B_SFT_Finetune_Pandas_Code" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
device_map="cuda:0", |
|
trust_remote_code=True |
|
) |
|
|
|
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=850) |
|
|
|
return pipe |
|
|
|
pipe = get_pipline() |
|
``` |
|
|
|
```python |
|
def generate_prompt(task, header_columns): |
|
prompt = f"""Below is an instruction that describes a task. Write a Python function using Pandas to accomplish the task described below. |
|
|
|
### Instruction: |
|
{task} |
|
|
|
header columns with sample data: |
|
{header_columns} |
|
|
|
### Response: |
|
""" |
|
return prompt |
|
``` |
|
|
|
```python |
|
prompt = generate_prompt("Your question based on tabular data", "Necessary columns names") |
|
result = pipe(prompt) |
|
generated_text = result[0]['generated_text'] |
|
print(generated_text.split("### End")[0]) |
|
``` |