|
--- |
|
tags: |
|
- generated_from_keras_callback |
|
datasets: nlp-esg-scoring/bert-base-finetuned-esg-snpcsr-clean |
|
model-index: |
|
- name: nlp-esg-scoring/bert-base-finetuned-esg-snpcsr-clean |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# nlp-esg-scoring/bert-base-finetuned-esg-snpcsr-clean |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.4074 |
|
- Validation Loss: 2.2353 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 2.4095 | 2.2167 | 0 | |
|
| 2.4085 | 2.2081 | 1 | |
|
| 2.4117 | 2.2194 | 2 | |
|
| 2.4127 | 2.2173 | 3 | |
|
| 2.4063 | 2.2011 | 4 | |
|
| 2.4114 | 2.2102 | 5 | |
|
| 2.4177 | 2.2123 | 6 | |
|
| 2.4102 | 2.2174 | 7 | |
|
| 2.4096 | 2.2211 | 8 | |
|
| 2.4074 | 2.2353 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- TensorFlow 2.8.2 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|