|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- deepseek |
|
- fp8 |
|
- vllm |
|
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-70B |
|
library_name: transformers |
|
--- |
|
|
|
# DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** DeepSeek-R1-Distill-Llama-70B |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 3/1/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B). |
|
It achieves an average score of 76.52 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 76.49. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 4096, 1 |
|
model_name = "nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
import argparse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot |
|
import os |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') |
|
parser.add_argument('--model_id', type=str, required=True, |
|
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') |
|
parser.add_argument('--save_path', type=str, default='.', |
|
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic') |
|
args = parser.parse_args() |
|
|
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = QuantizationModifier( |
|
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] |
|
) |
|
|
|
# Apply quantization |
|
oneshot(model=model, recipe=recipe) |
|
|
|
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic") |
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
# Save to disk in compressed-tensors format |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: |
|
|
|
OpenLLM Leaderboard V1: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--tasks openllm \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
``` |
|
|
|
OpenLLM Leaderboard V2: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=2,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks leaderboard \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
|
|
``` |
|
|
|
### Accuracy |
|
|
|
#### OpenLLM Leaderboard V1 evaluation scores |
|
|
|
| Metric | deepseek-ai/DeepSeek-R1-Distill-Llama-70B | nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic | |
|
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
| ARC-Challenge (Acc-Norm, 25-shot) | 66.38 | 66.38 | |
|
| GSM8K (Strict-Match, 5-shot) | 92.87 | 93.25 | |
|
| HellaSwag (Acc-Norm, 10-shot) | 85.41 | 85.40 | |
|
| MMLU (Acc, 5-shot) | 79.02 | 78.84 | |
|
| TruthfulQA (MC2, 0-shot) | 57.24 | 57.54 | |
|
| Winogrande (Acc, 5-shot) | 78.06 | 77.74 | |
|
| **Average Score** | **76.49** | **76.52** | |
|
| **Recovery (%)** | **100.00** | **100.03** | |
|
|
|
#### OpenLLM Leaderboard V2 evaluation scores |
|
|
|
|
|
| Metric | deepseek-ai/DeepSeek-R1-Distill-Llama-70B | nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic | |
|
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
| IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 43.51 | 42.47 | |
|
| BBH (Acc-Norm, 3-shot) | 35.30 | 33.66 | |
|
| MMLU-Pro (Acc, 5-shot) | 41.35 | 41.05 | |
|
| **Average Score** | **40.05** | **39.06** | |
|
| **Recovery (%)** | **100.00** | **97.53** | |
|
| Math-Hard (Exact-Match, 4-shot) | 5.55 | 9.03 | |
|
| GPQA (Acc-Norm, 0-shot) | 1.64 | 1.58 | |
|
| MUSR (Acc-Norm, 0-shot) | 13.28 | 13.80 | |
|
|
|
Results on Math-Hard, GPQA, and MUSR are not considred for accuracy recovery calculation because the unquantized model has close to random prediction accuracy which doesn't provide a reliable baseline for recovery calculation. |
|
|