Leo1212's picture
End of training
900a8d1 verified
|
raw
history blame
2.31 kB
metadata
library_name: transformers
language:
  - gsw
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - notebotIE/zh_split_preprocessed
metrics:
  - wer
model-index:
  - name: Whisper Large V2 - Swiss German
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: SwissDialDataset_ETH
          type: notebotIE/zh_split_preprocessed
        metrics:
          - name: Wer
            type: wer
            value: 0.1923865967631639

Whisper Large V2 - Swiss German

This model is a fine-tuned version of openai/whisper-large-v2 on the SwissDialDataset_ETH dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2725
  • Wer Ortho: 0.2707
  • Wer: 0.1924
  • Cer: 0.0743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer
0.1277 1.2300 250 0.2468 0.2631 0.1855 0.0556
0.0726 2.4600 500 0.2414 0.9085 0.6793 0.5239
0.0405 3.6900 750 0.2519 0.5194 0.6558 0.4984
0.0296 4.9200 1000 0.2725 0.2707 0.1924 0.0743

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3