nrshoudi's picture
Model save
0249684
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2
    results: []

wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0380
  • Per: 0.0182
  • Wer: 0.0209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 30.0

Training results

Training Loss Epoch Step Validation Loss Per Wer
2.3253 1.0 546 1.6463 0.9997 0.9990
1.7194 2.0 1093 1.4798 0.9993 0.9985
1.6318 3.0 1640 1.2181 0.9304 0.9399
1.4017 4.0 2187 0.5801 0.2704 0.3889
0.9203 5.0 2733 0.1995 0.1330 0.1439
0.669 6.0 3280 0.1462 0.0867 0.0928
0.5585 7.0 3827 0.0925 0.0739 0.0752
0.4954 8.0 4374 0.0795 0.0601 0.0573
0.4536 9.0 4920 0.0714 0.0498 0.0530
0.4183 10.0 5467 0.0726 0.0652 0.0679
0.3896 11.0 6014 0.0782 0.0566 0.0553
0.3643 12.0 6561 0.0713 0.0502 0.0514
0.3391 13.0 7107 0.0928 0.0693 0.0702
0.3229 14.0 7654 0.0596 0.0503 0.0484
0.3038 15.0 8201 0.0651 0.0531 0.0547
0.2853 16.0 8748 0.0577 0.0483 0.0473
0.2736 17.0 9294 0.0542 0.0463 0.0485
0.2603 18.0 9841 0.0519 0.0327 0.0325
0.2472 19.0 10388 0.0513 0.0336 0.0351
0.2346 20.0 10935 0.0589 0.0281 0.0310
0.2265 21.0 11481 0.0499 0.0285 0.0312
0.214 22.0 12028 0.0485 0.0281 0.0342
0.2045 23.0 12575 0.0479 0.0273 0.0295
0.1917 24.0 13122 0.0457 0.0267 0.0286
0.1814 25.0 13668 0.0423 0.0224 0.0265
0.1769 26.0 14215 0.0442 0.0243 0.0264
0.1682 27.0 14762 0.0396 0.0200 0.0235
0.161 28.0 15309 0.0386 0.0190 0.0225
0.1572 29.0 15855 0.0383 0.0186 0.0216
0.1502 29.96 16380 0.0380 0.0182 0.0209

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 1.18.3
  • Tokenizers 0.13.3