metadata
language:
- hi
base_model: nurzhanit/whisper-enhanced-ml
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Sanchit Gandhi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: default
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 35.622895622895626
Whisper Small Hi - Sanchit Gandhi
This model is a fine-tuned version of nurzhanit/whisper-enhanced-ml on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Wer: 35.6229
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.2948 | 0.2688 | 50 | 2.0785 | 12.9293 |
1.4104 | 0.5376 | 100 | 1.1845 | 2.6263 |
0.5806 | 0.8065 | 150 | 0.3972 | 24.0404 |
0.0701 | 1.0753 | 200 | 0.0263 | 48.0471 |
0.0023 | 1.3441 | 250 | 0.0012 | 39.2593 |
0.0006 | 1.6129 | 300 | 0.0005 | 39.8653 |
0.0004 | 1.8817 | 350 | 0.0004 | 31.7508 |
0.0003 | 2.1505 | 400 | 0.0003 | 32.7609 |
0.0002 | 2.4194 | 450 | 0.0002 | 34.6801 |
0.0002 | 2.6882 | 500 | 0.0002 | 31.4141 |
0.0002 | 2.9570 | 550 | 0.0002 | 38.2155 |
0.0001 | 3.2258 | 600 | 0.0001 | 33.6364 |
0.0001 | 3.4946 | 650 | 0.0001 | 36.2290 |
0.0001 | 3.7634 | 700 | 0.0001 | 35.7239 |
0.0001 | 4.0323 | 750 | 0.0001 | 34.9158 |
0.0001 | 4.3011 | 800 | 0.0001 | 37.2727 |
0.0001 | 4.5699 | 850 | 0.0001 | 35.2862 |
0.0001 | 4.8387 | 900 | 0.0001 | 35.5892 |
0.0001 | 5.1075 | 950 | 0.0001 | 34.9158 |
0.0001 | 5.3763 | 1000 | 0.0001 | 35.6229 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1