|
--- |
|
language: |
|
- hi |
|
base_model: nurzhanit/whisper-enhanced-ml |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Hi - Sanchit Gandhi |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: default |
|
split: None |
|
args: 'config: hi, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 35.622895622895626 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Hi - Sanchit Gandhi |
|
|
|
This model is a fine-tuned version of [nurzhanit/whisper-enhanced-ml](https://huggingface.co/nurzhanit/whisper-enhanced-ml) on the Common Voice 11.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0001 |
|
- Wer: 35.6229 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 3.2948 | 0.2688 | 50 | 2.0785 | 12.9293 | |
|
| 1.4104 | 0.5376 | 100 | 1.1845 | 2.6263 | |
|
| 0.5806 | 0.8065 | 150 | 0.3972 | 24.0404 | |
|
| 0.0701 | 1.0753 | 200 | 0.0263 | 48.0471 | |
|
| 0.0023 | 1.3441 | 250 | 0.0012 | 39.2593 | |
|
| 0.0006 | 1.6129 | 300 | 0.0005 | 39.8653 | |
|
| 0.0004 | 1.8817 | 350 | 0.0004 | 31.7508 | |
|
| 0.0003 | 2.1505 | 400 | 0.0003 | 32.7609 | |
|
| 0.0002 | 2.4194 | 450 | 0.0002 | 34.6801 | |
|
| 0.0002 | 2.6882 | 500 | 0.0002 | 31.4141 | |
|
| 0.0002 | 2.9570 | 550 | 0.0002 | 38.2155 | |
|
| 0.0001 | 3.2258 | 600 | 0.0001 | 33.6364 | |
|
| 0.0001 | 3.4946 | 650 | 0.0001 | 36.2290 | |
|
| 0.0001 | 3.7634 | 700 | 0.0001 | 35.7239 | |
|
| 0.0001 | 4.0323 | 750 | 0.0001 | 34.9158 | |
|
| 0.0001 | 4.3011 | 800 | 0.0001 | 37.2727 | |
|
| 0.0001 | 4.5699 | 850 | 0.0001 | 35.2862 | |
|
| 0.0001 | 4.8387 | 900 | 0.0001 | 35.5892 | |
|
| 0.0001 | 5.1075 | 950 | 0.0001 | 34.9158 | |
|
| 0.0001 | 5.3763 | 1000 | 0.0001 | 35.6229 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.5.0+cu124 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|